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Abstract

A series of scenarios is investigated whereby an optical flow - balancing guidance

law is used to avoid obstacles by steering an air vehicle around or between fixed

objects. These obstacles are registered as specific points that are representative of

features in a scene. The obstacles appear in the field of view of a single forward looking

camera. Ideally, the guidance law should allow the vehicle to pass safely between the

objects on a trajectory that passes through the orthogonal bisector of the segment

connecting the two closest obstacles. First, a 2-D analysis is presented where the rate

of the line of sight from the vehicle to each of the obstacles to be avoided is measured.

The analysis proceeds by using no field of view (FOV) limitations, then applying

FOV restrictions, and then adding features or obstacles in the scene. These analyses

show that using a guidance law that equalizes the line of sight rates with no FOV

limitations results in the vehicle being steered into one of the objects for all initial

conditions. An exception is when the vehicle is initially on, and aligned with, the

orthogonal bisector. Even in this most favorable instance, the trajectory is not stable

and a collision with an obstacle might ensue. The research next develops an obstacle

avoidance strategy based on equilibrating the optic flow generated by the obstacles

and presents an analysis that leads to a different conclusion in which balancing the

optic flows does avoid the obstacles. The special symmetric case is analyzed where

the vehicle’s trajectory is on the orthogonal bisector of the segment connecting the

two obstacles, the ideal obstacle avoidance trajectory which balances optic flow or

the rate of the lines of sight to the obstacles. An analysis is presented that shows

that this special trajectory is unstable for the linearized case, but the obstacles are

avoided. The paper then describes a set of guidance methods that with real FOV

limitations create a favorable result. Finally, the looming of an object in the camera’s

FOV can be measured and used for synthesizing a collision avoidance guidance law.
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For the simple 2-D case, looming is quantified as an increase in LOS between two

features on a wall in front of the air vehicle. The 2-D guidance law for equalizing

the optic flow and looming detection is then extended into the 3-D case. Then a set

of 3-D scenarios are further explored using a decoupled two channel approach, the

horizontal and vertical channels. In addition, the 3-D scenarios compare two image

segmentation techniques that are used to find optic flow vectors that could be used to

find obstacles in an image. Finally, the results from multiple scenarios will prove that

3-D obstacle avoidance is possible with proper image processing tools and applying

the aforementioned LOS rate equalization and looming detection guidance laws.
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Collision Avoidance

for UAVs

Using Optic Flow Measurement

With Line of Sight Rate Equalization

and Looming

I. Introduction

1.1 Motivation

Collision avoidance is a basic necessity. Anything in motion, for example a school

of fish or a flock of birds, must practice collision avoidance. “Collision avoidance is the

collision-free movement of two or more objects [9].” There are two primary techniques

used to accomplish this. The first is continuous path planning for the avoidance of

known obstacles and the second is on the fly collision detection [9]. Path planning

involves a priori knowledge of all obstacles, i.e., buildings, bridges, and towers. It also

necessitates knowing the vehicles velocity. Then a path is planned by mathematical

and analytical calculations to avoid the known obstacles. The collision avoidance

module uses vision and algorithms to check if static objects are obstacles where a

collision is possible and then takes avoidance action.

In UAV operations, collision avoidance is a necessity. Many Micro Unmanned

Air Vehicle (MAV)/Unmanned Air Vehicles (UAV) operate within urban canyons and

in this unknown environment many obstacles like buildings, trees, power lines, and

possibly other man-made obstacles exist. Their ability to navigate safely and au-

tonomously in this environment without collision is key to mission success. There is

also the chance that a UAV’s planned flight path take it into higher elevations and

into commercial airspace. In this airspace, the Federal Aviation Administration(FAA)

has stringent guidelines on collision avoidance that all aircraft must be able to comply

with [7]. This makes collision avoidance a fundamental part of a UAV’s flight. One of
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the keys to autonomous UAV flight comes from the ability to perform collision avoid-

ance in real-time. All aircraft must accomplish this in some way. For manned aircraft,

this is done visually or by transponder in a cooperative traffic environment [28]. Addi-

tional solutions to collision avoidance include radar and laser ranging. For MAVs this

is not feasible due to size and weight constraints. The hardware necessary for these

methods is far too heavy for most MAVs, hence the camera which can be lightweight

and is already flying on many MAVs is the sensor of opportunity [3]. The camera

being the sensor of choice means that exploitation of video is the obvious answer to

collision avoidance in these types of aircraft. The following sections describe some

actual applications that this research could directly impact.

1.1.1 Military Applications. The applications for UAVs have expanded in

recent years [2]. Some have been fitted with various sensors including cameras. Us-

ing the images from a camera mounted on a UAV has had a tremendous impact on

how the military does business. There are several UAV applications that the military

uses, for example: Intelligence Surveillance and Reconnaissance (ISR) missions like

convoy surveillance, target localization, target prosecution, communications transmis-

sions and border and port surveillance [2] [7]. These applications are appealing to the

military as these missions can be executed without risking human lives [3]. Saving

lives, while still meeting the missions of the military, is a definite objective. In recent

years, the UAV mission has been expanded to include weapons delivery, such as the

hellfire missile [2]. There is also an appeal because UAVs have small radar cross sec-

tions and are difficult to detect [2]. Accomplishing ISR tasks without detection gives

the military a distinct advantage.

UAVs are already an important part of the U.S. Air Force’s inventory: Global

Hawk, Predator, Hunter, Black Widow, and the ’BATCAM’ MAV. While Global

Hawk is one of the largest UAV at 25,000 pounds there are also smaller ones like the

2



Black Widow at a half pound [2]. These type of unmanned air vehicles are the future

of modern warfare.

1.1.2 Commercial Applications. The UAV is not just limited to military ap-

plications. Civilian applications are also possible. Many civilian organizations could

use, or are using, UAV/MAVs for various tasks. Some of these tasks include: mon-

itoring critical infrastructure, real-time disaster observation, wilderness search and

rescue, and in-storm weather measurements [7]; once again saving lives. Flying air-

craft into dangerous environments like over forest fires or large chemical spills could

then be avoided by piloted aircraft. It can even be envisioned that some typical he-

licopter or blimp operations could give way to the UAV. Police could use UAVs for

persistent suspect surveillance, tracking high speed car chases, or even monitoring

protests, demonstrations, and riots [7]. These could be accomplished without a pilot

and large and expensive aircraft. The UAV is much smaller, costs less, and requires

less maintenance than an aircraft or helicopter. This makes the employment of MAVs

appealing to the civilian sector as well as the military.

1.2 Problem Statement:Collision Avoidance

Unmanned Aerial Vehicles(UAVs) and Micro-UAV(MAV) have become increas-

ingly more useful. The following research develops a theory to support the UAV/-

MAV’s capability to navigate autonomously and avoid obstacles. The ability for a

UAV to navigate through its environment is key for survivability and mission success.

This can only be done by designing a collision avoidance guidance and control mod-

ule. Ensuring UAVs are autonomous implies that collision avoidance must be done

autonomously as well [3]. This research develops an algorithm that detects features

in a camera’s Field of View(FOV) from a forward mounted camera on a UAV. This

means that only objects directly in the vehicle’s flight path are detected. The algo-

3



rithm uses the measurement of optic flow for line of sight rate equalization and also

looming detection to determine proper course corrections so that the vehicle does not

collide with any obstacles. This vision-based collision avoidance algorithm is key for

the UAV’s survivability and its acceptance by operators. Survivability and autonomy

of these ISR assets is necessary to operate whenever they are needed [3]. The follow-

ing describes the approach to the problem and techniques used in the solution. This

approach entails the method of line of sight rate equalization and looming detection

in order to achieve collision free navigation.

1.3 Approach

The research provided is followed by a simulation study. The first part im-

plements collision avoidance using line of sight (LOS) rate equalization and looming

detection using the measurement of optic flow in a two dimensional (2-D) scenario.

The simulation supplies points as features tracked over time, thus generating optic

flow. The features are found in different configurations and the guidance algorithm

is applied to provide collision avoidance. The 2-D simulation confirms that the con-

trol law employed works as expected. Next, a three dimensional (3-D) simulation

is implemented with the devised control law based on LOS rate equalization and

looming detection. The 3-D collision avoidance is handled as two decoupled channel

guidance problems, the horizontal and vertical channels. In each channel, a version

of the 2-D control algorithm is applied using image processing techniques. The 3-D

environment has randomly placed buildings and obstacles that an air vehicle has to

navigate through. In the following subsections, the LOS rate equalization and looming

detection algorithms are described in more detail.

1.3.1 Line of Sight Rate Equalization. The measurement of optic flow has

been known for a long time [15]. Optic flow is defined as “the distribution of apparent

velocities of movement of brightness patterns in an image [15].” It can be caused by
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an object’s motion, by the observer’s motion, or both [15]. Optic flow is visualized as

a two dimensional vector field of velocities, the optic flow field [22]. This optic flow

field generally arises from translational or angular movements [22]. These flow fields

will give information on the magnitude and direction of motion. In this work, optic

flow velocity fields are used for obstacle detection in a UAV’s FOV and the ensuing

obstacle avoidance. These right and left hand obstacles’ flow vectors are then equal-

ized by a feedback control which guides the vehicle toward the orthogonal bisector of

the line which connects clusters of obstacles to the right and to the left of the MAV.

The guidance is based on LOS rate measurement to each object. The line of sight

rate to each object is calculated and the heading of the UAV is adjusted accordingly.

This will ensure that the vehicle flies through the clusters of obstacles.

1.3.2 Looming. Looming is known as the apparent growth in size of an

object which is viewed over time. The visual looming effect is characterized by “the

expansion of the projection of an object in the retina [18].” The visual cue of an

object growing larger is a stimulus in animals, including humans, that usually results

in a change in direction. This is one of the primary cues in humans and is a reflex for

obstacle avoidance [18]. In this work, looming will be detected using optic flow and

by monitoring the optic flow for several frames. With optic flow, the looming effect

is defined by flow vectors diverging from a single point in an image called the focus

of expansion (FOE) [23]. These flow vectors are segmented and checked for growth

or continued divergence. If this divergence is maintained for successive frames and

the FOE is centered in the image, it is determined that a collision is imminent. From

this, a decision is made to avoid the obstacle. This is the highest priority control law,

given that an object must be in the vehicle’s direct path. This technique is shown to

be effective for obstacle avoidance.
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1.4 Summary

The research will demonstrate that a viable solution for collision avoidance can

be designed using LOS rate equalization and looming detection using the measurement

of optic flow. Providing a solution for collision detection and avoidance is critical to

the autonomous capability of the UAV. As previously mentioned, collision avoidance

can be accomplished in two ways. The first is accurate path planning which uses a

priori information and on-board sensors like GPS to determine a path to navigate

through an environment. The second is detection of unknown objects in real-time,

on-the-fly, and control the UAV to avoid these objects. The second part is addressed

in this research. This research will show that this could be achieved with low cost

video cameras and image processing. The theories developed can be adapted easily to

actual image sequences with optic flow algorithms already in use for real-time collision

avoidance in UAV’s.

In Chapter II, the theories relating to this thesis are discussed. The chapter

begins with the discussion of Horn Schunck optic flow and common methods for

developing flow fields. Next it provides a biomimetic study on insects that gives

insight into simple vision systems occurring in nature. This is done for the purpose

of exploitation in computer vision systems. Next, the concept of looming is described

and some research is cited that uses looming in robotic systems. The research of

applying an optic flow collision avoidance technique is identified and is analyzed for

use in this thesis. Finally, the curl operator is described in detail for comprehension

of the this operator’s use.

Chapter III Methodology details the theory that applies to Line Of Sight (LOS)

rate equalization and the looming measurement. It provides a thorough discussion of

LOS rate balancing calculation, looming detection measurement, image processing,

optic flow development, and scene development. The LOS rate balancing discussion

is basic theory applied in two dimensions and further derives the balancing control

used in the collision obstacle avoidance algorithm. Looming detection theory in this
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research is related to the line of sight rate equalization and assumes one contiguous

obstacle with edges as features. Optic flow is developed synthetically using a method

that projects a surface onto a unit sphere. Every update of the spherical projection

is used to generate the changes necessary for developing optic flow. A complement

of image processing techniques are implemented to obtain optic flow vectors that

represent obstacles. The scene generation and trajectory updates are discussed in

which all simulations will take place and which present obstacles for the vehicle to

navigate around.

Chapter IV, details the method of testing the theory developed in Chapter III. A

number of parameters are described for initiating the simulation; scene configurations,

position initialization, resolution, and method of segmentation. The results from over

920 simulation runs are discussed. The successes are annotated and the failures

analyzed. These results form the basis for the demonstration that collision avoidance

can be attained using the guidance control law and described in this thesis.

Chapter V presents final thoughts on the work is presented and the efficacy of

the image processing for accomplishing the goal of obstacle avoidance. The chapter

ends by setting the stage for future work and aimed at increasing the capabilities of

this research.
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II. Background

This chapter introduces the concepts and theories applied in this research. The chap-

ter begins with a thorough discussion of optic flow, what it is and how it has been used

in the literature. It details information on biomimetic research and how it influences

this thesis, followed by a short background on the concept of looming and its origins.

Discussion on collision avoidance for different vehicles types will be developed. The

final concept discussed is the mathematical definition of the curl operation.

2.1 Optic Flow

Optic flow: it is described as “the speed at which texture moves in an image

focal plane as a result of relative motion between the observer and objects in the

environment” [24]. It can give valuable information about the arrangement of objects

in space that are projected onto an image as well as how they might change over

time [15]. The optic flow generated from movement is the result of two distinct

factors, the translational velocity and the angular velocity [22]. Tracking the changes

or shifts in the images using these two components can give information about motion

of the camera and the shape of the environment it is viewing [22]. These shifts can be

visualized by using a quill plot of the velocity vectors and overlaying it on the image.

There is a large volume of research in this area, mainly in the fields of robotics and

computer vision [20] [24] [27]. Optic flow has also been studied for motion estimation

as an alternative navigation method in GPS denied environments.

If discontinuities are found in the flow field, it aids the ability to segment regions

of interest from the background [15]. Optic flow is usually measured by calculating

velocity vectors in some field of view in an image - see Fig. 2.1.
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Figure 2.1: Optic Flow in a basic focal plane configuration of a camera

The basic premise is that pixels shift from one frame to another, given that

there is sufficient texture. These shifts can be calculated using the following formula

from [27].





δx

δy



 =
1

Z





Tzx− Tx

Tzy − Ty



 + wx





xy

y2 + 1



 − wy





x2 + 1

xy



 − wz





−y
x



 (2.1)

where δx and δy are the pixel position shifts, Tx,Ty, and Tz are the components of the

spatial translation T relative to the camera, x and y are the corresponding position

vectors and a feature pixel referenced from the center of the focal plane, Z is the focal

length, and wz,wy, and wx are the angular velocities about each axis as described

in [4] and [27].

According to [27], the optic flow is generated in an alternative way to the pre-

viously discussed in equation (2.1). It uses a correlation method in which (16×16

pixel) reference blocks (RB) of an image are compared against a (32×32 pixel) search

window (SW ). The comparison is computed using a Sum of Absolute Differences
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(SAD). This method takes the difference between each pixel intensity in the block

and the search window and then sums them to get the SAD value. The block is

then slid across the search window generating new SAD values for each correlation

position.

SAD(µ, ν) =
7

∑

k=−8

7
∑

i=−8

|ISW (µ+ i, ν + k) − IRB(i, k)| (2.2)

SAD(∆x,∆y) = min(µ,ν)

[

SAD(µ, ν)
]

(2.3)

The variables ISW and IRB are the intensities of the search window pixels and the

reference block pixels. The location in the search window that generates the minimum

SAD value represents the optic flow vector from one frame to another [27].

The Horn and Schunck method of “Determining Optic Flow” from [15] finds

the optic flow based on a brightness constancy idea. The idea is that there exists a

pattern or a change in the brightness pattern from each point and that the derivative

of the brightness dE
dt

, where E is the brightness constraint, should be equal to zero.

This is expanded using the chain rule to

∂E

∂x

∂x

∂t
+
∂E

∂y

∂y

∂t
+
∂E

∂t
= 0 (2.4)

where

u =
dx

dt
, (2.5)

v =
dy

dt
. (2.6)

The single linear equation becomes

Exu+ Eyv + Et = 0 (2.7)
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where Ex, Ey, and Et are the partial derivatives of the brightness function E(x, y).

The derivatives are then estimated spatiotemporally to find the optic flow using mea-

surements from an 8 block cube, where 4 blocks are from a previous time and the

same 4 blocks are at the current time. Next, a smoothing solution is implemented

that attempts to eliminate lighting effects such as reflections or areas of brightness

that can cause flow vector discontinuities. This is done by minimizing the square of

the magnitude of the gradient from the optic flow, as

∇2u =
∂2u

∂x2
+
∂2u

∂y2
, (2.8)

∇2v =
∂2v

∂x2
+
∂2v

∂y2
. (2.9)

This smoothing of the image is done by taking a local pixel average brightness and

subtracting the brightness for that pixel from the average brightness. A minimization

method is used to find the least sum of the errors for the rate of change of brightness

or the departure from smoothness in the optic flow. This is an iterative process using

the Gauss-Siedel method for each point in the image [15]. This method computes

a new velocity estimate based on current estimated derivatives and the average of

the previous velocity estimates. In some cases, where there is a region of uniform

brightness and the derivatives can not be calculated, the region is simply filled in by

the velocities that border that region with multiple iterations.

The next method for accomplishing optic flow estimation is one that uses a

motion estimation and another spatiotemporal method but with a least squares fit [5].

This method makes use of the same brightness method in Equation (2.4) from [15]

but use the form

Ax = b (2.10)

where the matrix A has two columns, the intensity derivatives in x and y, respectively.

The variable x is the velocity vector for the local constant velocity, and b is a vector
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consisting of the derivatives of the intensities with respect to time. This linear matrix

equation is then used to create lines and apply the Least Median Squares (LMS) to

find the best fit for the motion. This is accomplished by defining the set of lines as

y = mix+ ni, i = 1, 2, ....., p (2.11)

where m and n are constants for each line of the set of p lines. The closest point (CP )

to the given pixel location is found, where the CP is the point that has the minimum

error of the vertical distances to the set of lines and described as

ECP = min
(x,y)

p
∑

i=1

(mix+ ni − y)2. (2.12)

The standard regression (SR) error is calculated as

ESR = min
(m,n)

p
∑

i=1

(mxi + n− yi)
2. (2.13)

The claim is made that ESR can be transformed into ECP by using the (m,n) resulting

in the minimum and using the inverse transform of Equation (2.11) and solving for

(x, y). This new point is the new position found for the original pixel and a velocity

vector can be resolved and reaccomplished for each pixel to develop the optic flow

field [5].

The subsequent method analyzes optic flow in a camera’s focal plane and infers

information about the motion of the camera itself as well as information about the

shape of the environment it is observing [22]. This is key since it describes how optic

flow is generated in simulations presented later in this thesis. The optic flow fields used

in this research were based on this interpretation. The camera with its focal plane

is modeled as a projection onto a sphere with a single projection point originating

from the center of the sphere. From Fig. 2.2, Qi are multiple projection point unit

vectors, or resolution vectors, where the ith index is the number of resolution vectors

extending from Q. These vectors extend to the top and bottom of the surface and
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Figure 2.2: Optical Flow on a Spherical Projection Surface (reprint from [22])

multiple points inbetween. P̂i is the range along each Qi projection vector to the

surface projection, and is a Euclidean vector norm, V̂ is simply the translational

velocity vector of the surface, and Ω̂ is the angular velocity vector of the spherical

projection surface. The spherical projection surface is analogous to the location of

the camera’s pinhole. In [22], Q̇i, is the rate of change of the projection vectors onto

the unit sphere resulting in optic flow and can be calculated according to

Q̇i =

[

V̂ − (V̂ • Q̂i)Q̂i

]

P̂i

+ Ω̂ ×Qi where(1 ≤ i ≤ n). (2.14)

In this example, all of the vectors are in 3-D Cartesian space. In Equation (2.14),

n directly relates to the number of projection vectors and is the resolution of the

projection. This work in [22] further describes a least squares fit to determine the
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camera’s motion from the computed optic flow field. As noted previously, the work

in [22] serves as a basis for generating optic flow fields in the simulations in this thesis.

2.2 Biomimetics

Biomimetics is the study aimed at understanding the mechanics of biological

systems and their neurological behavior [14]. It encompasses a wide variety of ani-

mals from insects, to primates. The goal is to better understand the mechanisms that

animals use to navigate through their environment and exploit that information with

technology to create autonomous vehicles. Much of what is known today about optic

flow (Section 2.1) comes from the study of insects [20]. A significant amount of re-

search on the visual system of the fly has been accomplished to gain an understanding

of how they use vision for collision avoidance [10], [11], [19], and [12]. Flies are used

because their neuro-pathway has been studied extensively and is well known [10]. Of-

ten Blowflies are used due to its size [10]. The information learned from flies provides

the crux of aircraft motion estimation, but there is also a lot of insight about collision

avoidance from optic flow. This is because the fly uses Elementary Motion Detection

(EMD) for determining motion in it’s visual system. EMD is the basic process for

determining optic flow across its vision field [17] and [19]. Thus optic flow shows some

promise for accomplishing collision avoidance.

The study of the Blowfly and its visual system in [10] yielded some interesting

results. It is discerned that in the fly and other moving animals that,“optic flow is an

important source of information about self motion and the three dimensional layout of

the environment” [10]. The research discusses four key topics; unique organization of

the retinotopic input in the neurons that process optic flow, combination of optic flow

in both eyes, the accuracy of the optic flow information being processed, and the per-

formance of the neurons under motion stimulus. The fly’s eye is built with numerous

facets of ommatidia, which are thousands of small lenses that make up the compound

eye and focus the light to the photo receptor nerves. They are arranged in horizon-
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tal and vertical rows that give it a panoramic view of nearly 360◦. An interesting

thing to note is that the fly’s eye contains multiple sets of neurons that are sensitive

to “preferred directions” [10]. The preferred direction simply means the direction of

optic flow that the neuron seems to create a strong stimulus from. These neurons

are located in specific areas of the eye to detect the preferred direction most likely

occurring in the eye at its location. Two specific neuron classes are the Horizontal

System (HS) and the Vertical System (VS). HS primarily detects horizontal motion

and VS detects vertical motion. The fly uses both eyes for self motion estimation.

The large fields of view for each eye can still be fooled by optic flow patterns. For

ambiguous optic flow patterns, it is the fusion of the information from both eyes that

resolve the ambiguities. For example, when translation occurs, it creates an optic

flow field that extends across the entire field of view in a single direction for each

eye. When rotating, the optic flow field also extends across the entire field, except

that each eye observes an opposite direction of flow. This difference allows the fly to

discriminate between translation and rotation which is difficult to accomplish with

one eye. The procedure in which the gauged response to motion stimulus is measured

can be considered noisy. This is because the cell membrane tends to carry electrical

potentials that can create various responses to the same stimulus. It is stated that

large motion and rapid changes will create a favorable condition for measurement to

the membranes potential. The idea is that the potential in the neurons membrane

spike and remain spiked while the motion is occurring, but when slow changing motion

is observed, this potential is smaller and harder to discern from normal fluctuations.

Thus, it is believed that with the correct stimulus, the researchers can identify re-

sponses to observed motion. Finally, reactions to the neurons from a natural setting,

like in free flight or walking, is unknown. This means that the measurements and

experiments may not always depict what the animal’s self motion might be in this

natural situation. Instead, special cases have been used, for example, tethering the

animal in a flight simulator and recording the dynamic inputs to the brain from the

vision system for reenactment of natural flight. This is done to observe the suggested
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response. This seems to show that a series of inputs can elicit a response to turn

the animal around its vertical axis, suggesting that optic flow inputs to the eye are

exploited for this means. This research supports the idea that optic flow can be used

in video sequences to elicit a response for control of a small UAV or MAV.

The discussion based on [19] pertains to the study of the Blowfly. The authors

further identify major neurons that are sensitive to a “local preferred direction” (LPD)

which is the “preferred direction” described in [10]. This paper describes the HS and

VS neurons as horizontally and vertically sensitive respectively - see Fig 2.3. Here, H1

Figure 2.3: Neuron Response to Directional Motion (reprinted from [19])

pertains to HS neurons and V 1 pertains to VS neurons where the plot is of electrical
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spikes in the neuron for direction motion displayed to a flies eye. This was accom-

plished by a visual stimulus of a small black dot put in the flies view rotated around in

a circle to get full 360◦ degree rotation for all motion directions. From this, it is clear

that the strongest responses in the neurons occur at some LPD. The main distinction

of this research is that the stimuli is further investigated and creates a response in

the neuron. The speed at which the dot was rotated, the size, shape, and contrast of

the dot, and even the diameter of the rotation of the dot is changed. It is noted that

when the speed of the dot rotation is changed that the LPD remains constant, but as

the speed of the rotation increases the spike in the neuron potential increases as well.

Next, it is discovered that size, shape and reversal of the contrast for the dot made no

difference for the LPD, even as the dot is varied in rotation speed. Finally, the size

of rotation did not change the LPD except for very small rotation diameters. The

hypothesize is that when the diameter is small there is considerable overlap of the dot,

creating minimal motion detection changes. It is further stated that the ommatidia,

or the compound eye facets, offset enough that the small rotation might not engage

motion detection in neighboring ommatidia, and by extension, the HS neuron. This

provides more evidence that sensitivity to vertical and horizontal queues separately

might be a simple solution to 3-D motion analysis and collision avoidance. Obviously,

the fly fuses information from thousands of neurons from various locations in the

eye to make decisions, but local motion is accomplished across small segments of the

eye which might be more analogous to the single camera model employed in this thesis.

The work in [11] and [12], explores how the locust’s Lobula Giant Movement

Detector (LGMD), which is a neuron in its optic lobe, responds to approaching objects

that are on a collision course with the locust. They investigate the reactions of this

nerve to looming stimuli. The stimuli is generated using a black dot or square on a

bright background and reenacting a collision event by moving the object closer to the

eye of the locust while perpendicular to the eye - see Fig. 2.4A. The nerve responds

with an increased firing rate that peaks and then falls off. The stimulus object’s half
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size is l, and v is the approaching objects velocity which is used to determine the

angular size θ [11] [12] - see Fig. 2.4 - where t denotes the time-to-collision

θ(t) = 2 tan−1(
l

vt
). (2.15)
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Figure 2.4: A: perpendicual object approaching an eye; B: The plot of Time to Col-
lision with Looming Component; C: The Firing Rate of the LGMD (figure reprinted
from [12])

The convention used here is that v < 0 for an approaching object where the

speed is used as the absolute value, (|v| > 0). In locusts, the eyes are set on opposite

sides of the head and there is less than 20◦ overlap in the binocular vision [11]. This

means that, “because the receptive field is monocular and each eye views largely

independent portions of visual space, θ(t) fully describes the time course of retinal

stimulation by the approaching object” [11]. It is then stated that according to

Equation (2.15), θ(t) and θ̇(t) are nonlinear functions and that the temporal changes

in each occur due to the ratio of l
|v| . The looming ratio l

|v| is varied and the responses

are tracked to show that the peak firing times occur more often toward the collision

time when the ratio decreases. This means that the nerve is sensitive to the loomin
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ratio above, and is interpreted to mean that either the object is farther away or moving

slowly, suggesting that a collision is not imminent. This is further supported by the

apparent linear relationship between the peak firing time and the ratio l
|v| . From

these results, it appears that the threshold value for peak firing is when θ is between

15◦−35◦. Additionally, the peak firing times appear to be independent of luminance,

contrast, body temperature, variations in shape, texture, and approach angle. This

work provides the foundation for looming measurement. The idea of angular velocity

of an approaching obstacle as the basis for looming detection is similar to the looming

calculation used in this thesis.

2.3 Looming

Looming in vision is a stimulus that animals and humans use for collision avoid-

ance [18]. Looming, which is related to the expansion of an object in an animal’s or a

camera’s focal plane, can be calculated from optical flow or determined by flow field

divergence [18]. This divergence will arise from nonzero looming acquired from trans-

lation along the observer’s optical axis [6]. This key indicator of motion is essential

for many visual controlled functions [6]. In most cases, using optic flow for transla-

tion estimation can be assumed to be local motion, but divergence can be assumed to

occur across the entire image [6]. Looming is an imperative visual cue used in nature

and it can be identified in images and exploited for collision avoidance.

The author [18], measure looming in a scene by studying the texture and how it

changes temporally. The looming can then be calculated by the change in this texture

relative to the previously found texture. They also can determine basic orientation

of the surface from a set of “one dimensional directional densities of the texture

primitives” [18]. Looming, L, is described as

L = −dR/dt
R

(2.16)
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where R is the range to the center of an obstacle. The authors further state, “Looming

is independent of rotation of the camera and it can be conveniently measured using

a logarithmic retina” [18]. They also indicate that looming is related to τ , the time-

to-collision, also described in [8]. Although looming is related to τ , it is not identical.

Confirmation from other references state that the rate an object expands in an image

is proportional to the looming value. Hence, an equation is formed that calculates

the expansion of texture in a scene by first using the relationship

r2 =
γf 2C

k
(2.17)

where r is the range from the camera pinhole to the feature in the image plane, f is

the focal length, γ and k are described as the textural densities, and C is defined as

cos θ - see Figs. 2.5 and 2.6. Differentiating both sides and divide by 2r2 yields

dr/dt

r
=

1

2

dγ/dt

γ
+

1

2

dC/dt

C
. (2.18)

Simplifying and using Equation (2.17), the looming equation then becomes

x

y

z

n

R

Camera

Textural Surface

Figure 2.5: Image depicts the orientation of the camera and the surface observed.
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L =
1

2

dγ/dt

γ
+

1

2
tan θ

dθ

dt
(2.19)

Equation (2.19) is used to determine the expansion of textures which indicates loom-

ing. They state that dγ/dt
γ

can be measured directly from the texture density in the

image but θ and dθ
dt

are calculated much differently. As noted previously, θ is computed

from the texture density along several lines which provides a look up table used for

the texture density. Then dθ
dt

is calculated as θk − θk−∆t where ∆t is an arbitrary time

step, but in general, this time step would increase as velocity increases. This method

for detecting looming requires decisions based on a priori knowledge, for example,

the look up table of θ values. In a real-time UAV collision avoidance system, this

information is not privy. For this thesis, the texture density tracking idea is put into

use but by using edges as the texture information and tracking them temporally, and

using LOS angles that can be measured in the focal plane.

The authors in [23] uses flow field divergence for exactly the opposite purpose

that is being researched in this thesis. The use of flow fields is interpreted to control

the docking of mobile robots into docking stations. The main idea is that as a mobile

robot approaches an object, it needs to slow down and position itself correctly. It
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is envisioned that this could be used for robot automation to complete tasks like

redocking in charging stations, pallet lifting, or transportation of goods [23]. The

research intends to accomplish this by using optic flow to determine looming from

diverging flow vectors and determining the focus of expansion (FOE) location and

time to collision. The time to collision is directly calculated from the diverging flow

field or looming vectors. The problem is that accurately describing the divergence is

difficult, given rotational components of the optic flow. In this work, it is intended

to mitigate the problem caused by rotational components and detail how the actual

FOE is found. First begin by defining the divergence D as

D = ux + vy (2.20)

where ux and vy are the partial derivatives of horizontal and vertical components of

optic flow respectively. The time to collision τ is then defined as

τ =
Z

Tr

=
2

D
; (2.21)

where Z is the distance to the object along the translational axis and Tr is its velocity.

From here, there is a need to compensate for the rotational components in the flow

field and is accomplished as follows - see Fig. 2.7. First, it begins by defining the
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Figure 2.7: Geometric Configuration
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distance to the object as

Z(x, y) =
Z0

1 − a x
fx

− b y
fy

(2.22)

Z0 being the distance to the surface of the object along the optical axis, x and y are

image coordinates, and fx and fy are the focal lengths expressed in pixels. Transla-

tional velocity, Tc, and angular velocity, ωc, of the camera are defined by - see Fig.

2.7;

Tc =
[

αTr βTr γTr

]

, (2.23)

ωc =
[

ωx ωy ωz

]

. (2.24)

Then using these equations for optic flow

u(x, y) = fx

[

γTr

(

x
fx

− α
)

Z(x, y)
+ ωx

xy

fxfy

− ωy

(

1 +
x2

f 2
x

)

+ ωz
y

fz

]

, (2.25)

v(x, y) = fy

[

γTr

(

y
fy

− β
)

Z(x, y)
+ ωx

(

1 +
y2

f 2
y

)

− ωy
xy

fxfy

− ωz
x

fx

]

, (2.26)

and describing the distance to the FOE point in the image at (x′, y′), or Z(x, y)

becomes

Z(x, y) =
Z(x′, y′)

1 − ax−x′

fx

− by−y′

fy

(2.27)
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Substituting Z into the optic flow Equations (2.25) and (2.26) yields.

u(x, y) =
γTr(x− fxα)

Z(x′, y′)

[

1 − a(x− x′)

fx

− b(y − y′)

fy

]

+ωx
xy

fy

− ωy(fx +
x2

fx

) + ωz
y

fx

, (2.28)

v(x, y) =
γTr(x− fxα)

Z(x′, y′)

[

1 − a(x− x′)

fx

− b(y − y′)

fy

]

+ωx(fy +
y2

fy

) − ωy
xy

fx

− ωz
x

fx

. (2.29)

The partial derivatives are taken of u(x, y) and v(x, y) and substituting x = x′ and

y = y′ because it is assumed that the optical flow at the FOE is zero, this leads to

ux

∣

∣

∣

foe
=

γTr

Z(x′, y′)

[

1 − a(
x′

fx

+ α)

]

+ ωx
y′

fy

− ωy
2x′

fx

, (2.30)

vy

∣

∣

∣

foe
=

γTr

Z(x′, y′)

[

1 − b(
y′

fy

+ β)

]

+ ωx(
2y′

fy

) − ωy
x′

fx

. (2.31)

Taking the sum of these as in Equation (2.20), develops

Df = − γTr

Z(x′, y′)

[

a(
x′

fx

+ α) + b(
y′

fy

+ β − 2

]

+ 3
(ωxy

′

fy

− ωyx
′

fx

)

(2.32)

where Df is the divergence at the FOE and with some type of inertial measurement

unit Tr, ωx, and ωy can be easily determined. The authors continue on to calculate the

time to collision for the FOE and imply that due to the use of a ground robot the ωz

can be neglected. Furthermore, the researchers use this time-to-collision variable to

establish a feedback control to decrease the robot’s velocity as an object approaches.

Knowing that looming is a key calculation for this thesis and if the time to collision

were known as in this work, a control could be established to avoid the obstacle versus

decreasing the velocity.
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2.4 Collision Avoidance

The authors in [8], use a simulated ground robot with a simulated point camera

and a field of view of 0◦ − 330◦. Optic flow is generated from translational motion

only. This is done because the simulation of the robot motion is in a “piecewise linear

manner” [8]. The Optic flow is then calculated by

β̇ =
|h| sin β

d
(2.33)

where β̇ is the angular velocity of the optic flow, h is the robots velocity, β is the

angle to a specific feature used to calculate optic flow, d is the distance between the

camera’s simulated point to the feature. The research also describes the time-to-

collision variable τ , where τ = β

β̇
. If it falls below a threshold, the robot turns 180◦.

The τ value is similar to a looming detection value. The idea is to navigate through

a maze by equalizing the optic flow seen on each side of the robot with set of two

cameras. The optic flow rates, β̇L and β̇R for the left and right side respectively, are

calculated and averaged. The robot turns according to the control rbal given by

rbal = κ
(

β̇L − β̇R

)

(2.34)

where κ is a scaling constant/gain. The basic concept is that when the average optic

flow is higher on one side than the other, the robot turns in the away from the higher

optic flow. The paper continues to discuss varying methods to attain collision avoid-

ance through a maze while finding a goal location. The basic Equation (2.34) already

presented is modified to account for some a priori information. Using Equation (2.34)

information it makes decisions on turns and adjusts a bias that controls the robot to

remain closer to one wall as compared to the other during the turn. The research

furthermore includes a technique where salient values are given at specific location

to change the control bias to match the circumstance. In this thesis, there is no pre-

sumption of a goal location, so the idea of balancing the optic flow and providing a

control mechanism is a major take away from this work. The rest of the work, while
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interesting, does not have much importance for collision avoidance and requires too

much a prior information.

2.5 Curl Operator

The curl operator is a vector operator that is used to determine if a rotation

exists in a particular vector field [21]. Imagine a paddle wheel placed into the currents

of a river - see Fig. 2.8. The paddle wheel will rotate depending on the vector strength.

If the magnitude of the vectors is equal there is no curl (i.e., no rotation), but if the

magnitude is uneven then a curl is evident at between the two vectors. Using the

right hand rule, positive curl is a rotation that is counterclockwise and negative curl

is clockwise rotation [21] - see Fig. 2.8.

Negative Curl

No Curl

Positive Curl

Figure 2.8: Description of Curl in a Vector Field

The curl operator is defined as [21],

curlA = ∇× A = lim
∆s→0

un

∮

A · dl
∆s

. (2.35)
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From Equation (2.35), it can be seen that it can be equivalently calculated by [21]

curlA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ux uy uz

∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.36)

= ux

(∂Az

∂y
− ∂Ay

∂z

)

+ uy

(∂Ax

∂z
− ∂Az

∂x

)

+ uz

(∂Ay

∂x
− ∂Ax

∂y

)

(2.37)

The math shows that the curl is always orthogonal to the plane in which the the

vectors reside. In this thesis, the optic flow field is described as x and y vectors only,

hence there will only be curl values in the z direction.

2.6 Summary

There is key information that is derived from research already accomplished.

The application of optic flow is necessary to generate measurements of possible ob-

stacles. The biomimetics display that optic flow can be used for collision avoidance.

The looming theory sets the ability to accomplish measurement of looming from optic

flow. Colliision avoidance is used in various methods in the literature and the method

described in this chapter is applied in this work. The thesis combines multiple aspects

from these research areas to creat a single obstacle collision avoidance algorithm.

The theory represented in the following chapter is based on five main topics:

optic flow, biomimetics, looming detection, collision avoidance, and the curl operator.

All of these concepts need to be well understood for completing the work accomplished

in this thesis. In the next chapter, the theories will be presented and shown how they

are applied.
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III. Methodology

3.1 Introduction

Flying Micro Aerial Vehicles (MAVs) in unstructured environments requires the

ability to autonomously avoid obstacles [25]. The MAV must be able to avoid the

obstacles when their positions are not known ahead of time, and without operator

intervention.

The measurement of optical flow can be used for autonomous navigation [26]

and/or obstacle avoidance guidance [8]. Motivated by biomimetics, an autonomous

guidance scheme for obstacle avoidance has been suggested - see for example [16]. The

proposed guidance scheme relies solely on nullifying the difference of the optical flow

generated by obstacles in the field of view of a single forward omni directional camera.

Nullifying the difference of the Line Of Sight (LOS) rates generated by obstacles in

the field of view of the camera is also an interesting guidance concept, in particular,

since the direct measurement of LOS rates is easily implemented, e. g., in Infrared

(IR) guided air-to-air missiles.

Biomimetic inspired guidance concepts are intuitive. Consider the simplest case

where there are just two obstacles and the MAV is initially located on, and aligned

with, the orthogonal bisector of the segment connecting the two obstacles - see Fig.

3.1. The proposed guidance laws will generate a flight path that keeps the UAV on

the orthogonal bisector such that the MAV flies between the obstacles. However, this

is a special case. For all other cases, where the MAV is initially off the orthogonal

bisector and/or is not aligned with the orthogonal bisector, the optic flow balancing

guidance law will not steer the MAV toward the orthogonal bisector. We will show

that, contrary to one’s intuition, the proposed guidance method might result in a

collision with an obstacle when the literal line of sight rates or optic flow rates’

difference are nulled for a 360◦ FOV camera. For this case, the proposed guidance

method will always result in a collision with an obstacle when the difference of the LOS

rates is nulled; however, by using optic flow balancing guidance with realistic sensor

restrictions, obstacle avoidance can be achieved. The stability of the ideal trajectory,
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where a MAV is initially on the orthogonal bisector of the segment connecting the

two obstacles, is also analyzed. It is shown that the control law is less stable the

closer the air vehicle gets to the objects. Finally, the looming concept is introduced.

Looming in the 2-D scenario is quantified as a LOS rate to the obstacle’s features in

its FOV. It is shown that the obstacle can be avoided with a control law that strives

to take advantage of FOV restrictions.

3.2 Analysis 1 - Two Cameras

For simplicity, we initially consider a two-dimensional scenario where the motion

is constrained to the Euclidean plane with two fixed obstacles separately tracked

by two electro-optical sensors. The MAV is initially at point A and the two fixed

obstacles are at points B and C separated by distance d. The objective is to steer

the air vehicle between the obstacles. The range of the MAV from B is r and the

angle included between the baseline |BC| and the radial from B to the MAV at A is

θ. The “engagement triangle” ABC is shown in Figure 3.1. The speed of the MAV,

V , is constant and the relative course of the MAV is φ, as shown in Figure 3.1.

A

CB

r R

d

V

Figure 3.1: Problem geometry for MAV at A avoiding obstacles B and C

The optical flow in the cameras’ focal planes generated by obstacles B and

C, respectively, causes the LOS to B and C to rotate. The rates of the LOS to
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B and C are measured. A biomimetic inspired obstacle avoidance guidance law -

see Equation (3.3) - relies on nulling the difference between the rates of the LOS to

obstacles B and C. The MAV’s course angle φ is set accordingly.

To derive the differential equation governing the MAV’s motion, the rate of the

LOS to obstacles B and C is calculated in Equations (3.1) and (3.2), respectively:

θ̇ = −V sinφ

r
, (3.1)

and

ψ̇ = −V sin(∠A− φ)

r
, (3.2)

where R is the range to obstacle C and ψ is the angle included between the LOSs AC

and |BC|. The course/control φ of the MAV is determined by the guidance law

θ̇ = ψ̇ (3.3)

and from Equations (3.1) and (3.2) we obtain

sinφ

r
=

sin(∠A− φ)

R

=
sin(∠A) cosφ− cos(∠A) sinφ

R
,

which yields the control

tanφ =
sin(∠A)

cos(∠A) +R/r
. (3.4)

Next from △ ABC we calculate

sin(∠A) =
d

R
sin θ , (3.5)

cos(∠A) =
r − d cos θ

R
, (3.6)
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and

R =
√
r2 + d2 − 2dr cos θ . (3.7)

Inserting Equations (3.5)-(3.7) into Equation (3.4) yields the control law

tanφ =
dr sin θ

2r2 + d2 − 3dr cos θ
. (3.8)

Evidently, due to obstacle limitations, the relative course φ of the MAV must satisfy

0 ≤ φ ≤ ∠A (3.9)

We will describe the motion of the MAV using polar coordinates r, θ where

ṙ = −V cosφ, (3.10)

and

θ̇ = −V
r

sinφ . (3.11)

The quotient of the preceding equations yields

dθ

dr
=

1

r
tanφ . (3.12)

Combining Equations (3.8) and (3.12), and using the non-dimensional range r → r/d,

gives the differential equation

dθ

dr
=

sin θ

1 + 2r2 − 3r cos θ
, θ(r0) = θ0 . (3.13)

There are two axes of symmetry in the solution of the differential Equation

(3.13). These consist of 1) the extension of the segment |BC|, and, 2) the orthogonal

bisector of the segment |BC|. Note that the non-dimensional separation |BC| is now

1. By symmetry, the initial conditions of interest satisfy 0 ≤ θ0 < π/2, 1/2 ≤ r0. For

a path beginning on the orthogonal bisector between points B and C in Figure 3.1,
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the initial conditions satisfy

θ0 = arccos(
1

2r0
) .

The solution of the differential Equation (3.1) then satisfies

θ = arccos(
1

2r
) .

In this special case, the MAV’s course is orthogonal to the segment |BC| and the

MAV will stay on the orthogonal bisector of the segment |BC| and will pass between

the obstacles B and C. This conforms to our intuition. Unfortunately, this is the

exception.

It can be shown that the locus of all points where the MAV’s course is or-

thogonal to the segment |BC| is a circle whose diameter is the segment |BC|. From

points outside this circle and between the normals to |BC| erected at B and C, the

MAV trajectories given by the solution of the differential Equation (3.13) initially

migrate toward the orthogonal bisector |BC|. However, once inside the said circle,

the trajectories flow toward B or C, and a collision with one of the obstacles occurs.

Also, trajectories initially to the left of the orthogonal bisector to |BC| erected at C,

terminate at C. Trajectories initially to the right of the bisector to |BC| erected at

B, terminate at B. Thus, a collision with an obstacle is in fact unavoidable! The

annotated numerical solution is illustrated in Figure 3.2.

3.3 Analysis 2 - Omni Directional Camera

Figure 3.3 shows the geometry for the optic flow measurement-based obstacle

avoidance system using one omni directional camera. The optical flow in the camera’s

focal plane generated by obstacles B and C, respectively, is measured. Recall that

the objective is to steer the air vehicle between the obstacles. The camera’s focal

plane is shown offset from the y-axis by the focal distance f, and the projection of
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Figure 3.2: Flow field when equilibrating LOS rates. The trajectories terminate at
obstacles B and C.

obstacles B and C in the camera’s field of view onto the image planes is at fB and

fC , respectively [13].

The coordinates in the camera’s focal plane of the objects in the images, B and

C are fB and fC , respectively. The optical flows generated by B and C are ḟB and

ḟC . In the image planes the obstacles are at

fB = f tanφ

fC = -f tan(A− φ)

and the optic flow rates are calculated as

ḟB = f
1

cos2 φ
φ̇, (3.14)

ḟC = −f
1

cos2(A− φ)
(Ȧ− φ̇). (3.15)
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Figure 3.3: Problem geometry for one omnidirectional camera

The biomimetic inspired guidance law in Equation (3.16) relies on nullifying the dif-

ference between the optical flows generated by B and C (Equations (3.14) and (??)

respectively). The MAV’s turning rate, φ̇, is set accordingly. Thus, the turning rate

φ̇ or control of the MAV is determined by the guidance law

ḟB = −ḟC (3.16)

Inserting Equations (3.14) and (3.14) into Equation (3.16) yields

1

cos2 φ
φ̇ =

1

cos2(A− φ)
(Ȧ− φ̇) (3.17)
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we can write

sin ∠A =
d

R
sin θ

cos ∠A =
r − d cos θ

R

where

R =
√
r2 + d2 − 2dr cos θ (3.18)

From Equation (3.17) we calculate

φ̇ =
cos2 φ

cos2 φ+ cos2(A− φ)
Ȧ

=
cos2 φ

(1 + cos2A) cos2 φ+ sin2A sin2 φ+ 2 sinA cosA sinφ cosφ
Ȧ

=
1

1 + cos2A+ sin2A tan2 φ+ 2 sinA cosA tanφ
Ȧ

=
1

1 + (sinA tanφ+ cosA)2
Ȧ. (3.19)

Hence

cosA φ̇ =
1

1 + (sinA tanφ+ cosA)2

d

dt
(sinA)

=
1

1 + (sinA tanφ+ cosA)2

d

dt
(
d

R
sin θ) (3.20)

and therefore,

r − d cos θ

R
φ̇ =

d

1 + (sinA tanφ+ cosA)2

R cos θθ̇ − sin θṘ

R2

=
d

1 + (sinA tanφ+ cosA)2

R cos θθ̇ − sin θ rṙ−dṙ cos θ+dr sin θθ̇
R

R2
(3.21)

35



where substituting Equation (3.21) into Equation (3.19) gives

φ̇ =
d

R2

1

1 + (sinA tanφ+ cosA)2

θ̇(R2 cos θ − dr sin2 θ) + ṙ sin θ(d cos θ − r)

r − d cos θ

=
d

R2

1

1 + (sinA tanφ+ cosA)2
(θ̇
r2 cos θ + d2 cos θ − dr − dr cos2 θ

r − d cos θ
− ṙ sin θ)

=
d

R2

1

1 + (sinA tanφ+ cosA)2
[(r cos θ − d)θ̇ − ṙ sin θ]

=
V d

R2

d
r
sinφ+ sin(θ − φ)

1 + (sinA tanφ+ cosA)2

=
V d

R2

d
r
sinφ+ sin(θ − φ)

1 + ( d
R

sin θ tanφ+ r−d cos θ
R

)2

= V d
d
r
sinφ+ sin(θ − φ)

r2 + d2 − 2dr cos θ + (d sin θ tanφ+ r − d cos θ)2

= V d
d
r
sinφ+ sin(θ − φ)

r2 + d2 − 2dr cos θ + [−d cos(θ+φ)
cos φ

+ r]2

=
V/d

r/d

sinφ+ ( r
d
) sin(θ − φ)

1 + ( r
d
)2 − 2( r

d
) cos θ + [− cos(θ+φ)

cos φ
+ r

d
]2

(3.22)

Set

r → r

d
, t→ V

d
t

Hence, the non-dimensional closed-loop dynamics are

ṙ = − cosφ, r(0) = r0 (3.23)

θ̇ = −1

r
sinφ, θ(0) = θ0 (3.24)

φ̇ =
1

r

sinφ+ r sin(θ − φ)

1 + r2 − 2r cos θ + [− cos(θ+φ)
cos φ

+ r]2

=
cos2 φ

r

sinφ+ r sin(θ − φ)

(1 + r2 − 2r cos θ) cos2 φ+ [− cos(θ + φ) + r cosφ]2
, (3.25)

where φ(0) = φ0, 0 ≤ t. The MAV’s kinematics are governed by the set of three

nonlinear differential Equations (3.23) - (3.25).

It is easy to see that if the initial configuration is symmetric, as in Figure 3.4,
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Vr
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Figure 3.4: Symmetric initial geometry

where

cos θ0 =
1

2r0
(3.26)

sinφ0 =
1

2r0
(3.27)

then the configuration stays symmetric. That is,

cos(θ(t)) =
1

2r(t)
, 0 ≤ t, (3.28)

or;

sin(φ(t)) =
1

2r(t)
, 0 ≤ t, (3.29)

Consider the following question: If 0 ≤ φ0 < arcsin(1/2r0), does the trajectory

avoid B?
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To answer this question proceed as follows: If θ is monotonically decreasing, one can

eliminate t and obtain a set of two differential equations:

dr

dθ
=

r

tanφ
, r(θ0) = r0 (3.30)

dφ

dθ
= −

1 + r( sin θ
tan φ

− cos θ)

1 + r2 − 2r cos θ + (sin θ tanφ− cos θ − r)2
,

φ(θ0) = φ0, 0 ≤ θ ≤ θ0 (3.31)

Let

ζ ≡ 1

tanφ
, (3.32)

then

ζ̇ = − 1

tan2 φ

1

cos2 φ
φ̇ = − 1

sin2 φ
φ̇. (3.33)

Hence,

dr

dθ
= r ζ , r(θ0) = r0, (3.34)

dζ

dθ
= (ζ2)

1 + r(ζ sin θ − cos θ)

cos2 φ(1 + r2 − 2r cos θ + ( sin θ
ζ

− cos θ − r)2)
,

ζ(θ0) =
1

tanφ0

, 0 ≤ θ ≤ θ0. (3.35)

The flow field is obtained by solving the differential system Equation (3.34) and (3.35)

and plotting x(t) = r(t) cos(t), y(t) = r(t) sin θ(t), 0 ≤ t. In general, the flow field is
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given by the solution of the differential system

ṙ = − cosφ , r(0) = r0 (3.36)

θ̇ = −1

r
sinφ , θ(0) = θ0 (3.37)

φ̇ =
cos2 φ

r

sinφ+ r sin(θ − φ)

(1 + r2 − 2r cos θ) cos2 φ+ [− cos(θ + φ) − r cosφ]2
,

φ(0) = φ0, 0 ≤ t (3.38)

for 0 < θ0 ≤ π
2
, 0 < r0 <

1
2 cos θ0

and −θ0 < φ0 < π − θ0, and for π
2
≤ θ0 ≤ π,

0 < r0 <∞ and −θ0 < φ0 < π − θ0.

The “solution” of the differential Equations (3.36)-(3.38) shows that the MAV

flies between the obstacles and the maneuvers are not too extreme. The trajectories

avoid the obstacles for all initial positions. Obstacle avoidance is then guaranteed

which is seen, for example, in Fig. 3.5 , where the MAV is initially positioned at

various x coordinates of 0 to 1 at 0.25 intervals and the MAV’s initial course angle is

θ0 + φ0 = π
2
. That is, the MAV is pointed in a direction orthogonal to the segment

|BC|. The MAV will approach the orthogonal bisector of the segment |BC| which

connects the obstacles, as shown in Fig. 3.5.

When the UAV is initially positioned on the orthogonal bisector of the segment

|BC|, the trajectory appears to be stable. Moreover, the “ideal” symmetric trajecto-

ries, namely, the trajectories emanating from the orthogonal bisector of the segment

|BC| and with initial course angle φ0 = arcsin(1/2r0), and where intuition would

predict smooth sailing between the obstacles, are in fact unstable! This is proved

in Section 3.4.2 in the sequel. The end result is that the obstacles are avoided but

unstable for short ranges from B and C.

3.3.1 Looming Theory. Two features, say B and C, might in fact represent

the edges of a solid object and the segment |BC| the surface of the object. In this

case, there is one obstacle in the field of view of the camera, and it is the solid segment

|BC|. To address this situation, the concept of looming becomes complicated. The
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Figure 3.5: This figure depicts Trajectories Using Optic Flow Balancing

work is confined to a planar geometry example. The obstacle is a solid white object

with texture that is defined by two closely located dark features at points B and C.

Thus, the segment |BC| does not represent an opening but rather a solid line. The

distance d = |BC| << 1. As before, the geometry is similar to that of the optic flow

balancing analysis - see Fig 3.3. Once again, the positions of the features B and C in

the camera’s focal plane are

fB = f tanφ,

fC = -f tan(A− φ),

and the optic flow rates are calculated as

ḟB = f
1

cos2 φ
φ̇ (3.39)

ḟC = −f
1

cos2(A− φ)
(Ȧ− φ̇) (3.40)
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Now, track fB and fC features over time and describe looming(L) as

L ≡ ḟB − ḟC

f
(3.41)

where f is the focal length of the camera thus looming can be written as,

ḟB − ḟC

f
=

1

cos2 φ
φ̇+

1

cos2(A− φ)
(Ȧ− φ̇). (3.42)

At long range (if |A| << 1) then looming is approximated as,

L ≈ 1

cos2 φ
Ȧ. (3.43)

It is useful to note that

1

cos2 φ
= 1 + (

f

fB

)2. (3.44)

When the aircraft bears down on the bisector of the segment |BC|, the ∠A is in-

creasing. This intuitively means that Ȧ > 0 ⇒ ḟB − ḟC > 0. Hence, monitoring

ḟB − ḟC > 0 indicates that segment |BC| is indeed closer. To determine L, calculate

A =
d

R
sin θ (3.45)

and taking the derivative yields

Ȧ = d
R cos θθ̇ − Ṙ sin θ

R2
(3.46)
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where

Ṙ = −V cos(φ− A) (3.47)

θ̇ =
−V
r

sinφ (3.48)

So Ȧ becomes,

Ȧ =
dV

R2
[
R

r
cos θ sinφ+ sin θ cos(φ− A)] (3.49)

and,
R

r
=

sin θ

sin(θ + A)
(3.50)

Then substituting Equation (3.50) into Ȧ and simplifying gives,

Ȧ =
dV

R2 sin(θ + A)
[− sin θ cos θ sinφ+ sin θ sin(θ + A) cos(φ− A)]

=
dV sin θ

R2 sin(θ + A)
[cos θ sinφ+ (sin θ + A cos θ)(cos θ + A sinφ)]

=
dV

R2
(1 − A cot θ)[− cos θ sinφ+ sin θ cosφ+ A cos(θ − φ)]

=
dV

R2
(sin(θ − φ) + A[cos(θ − φ) − cos θ

sin θ
sin(θ − φ)])

=
dV

R2

[

sin(θ − φ) + A
sinφ

sin θ

]

Thus,

Ȧ ≈ dV

R2
sin(θ − φ) (3.51)

Hence, substituting Ȧ into Equation 3.43 yields

L =
ḟB − ḟC

f
=
dV

R2

sin(θ − φ)

cos2 φ
. (3.52)
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One exception is when φ = 0, then

L = Ȧ =
dV

R2
sin θ = − d

R
θ̇ (3.53)

Another interesting aspect to inspect is that

ḟB + ḟC

f
=

1

cos2 θ
(2φ̇− Ȧ). (3.54)

In this case, when the camera moves toward the features on the orthogonal bisector

of segment |BC| it can be seen that,

φ =
1

2
A⇒ ḟB + ḟC

f
= 0 (3.55)

Hence, by monitoring ḟB + ḟC 6= 0 it can be determined that the segment|BC| is not

directly in the line of sight. This is key when considering control mechanisms for any

objects that loom in the FOV. The implementation of controls in the case of looming

occurs maybe dependent upon how this appears.

3.3.2 Field of View Restrictions. FOV limitations are included such that

the FOV is set at 120◦ at ±60◦ from the heading in each direction - see Fig. 3.6. This

complicates the scenario as the obstacles may or may not always be within the FOV.

When both obstacles are within the FOV, the previously discussed solution applies

the φ̇ control to equalize LOS to each obstacle. Unfortunately, the ensuing trajectories

generate heading angles which invariably cause an obstacle to be outside the FOV.

The previously derived guidance law does not apply, and a new guidance law is called

for. Therefore, if the line of sight does not rotate, it suggests a collision is imminent,

so an increase of the turning rate φ̇ is commanded, specifically, φ̇ must become larger

to ensure no collision takes place. The turn rate is relative to the location of the
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obstacle. For example, if the obstacle is to the left of the MAV then

φ = φ− π

30
(3.56)

and if it is to the right of the MAV then

φ = φ+
π

30
(3.57)

where

φ̇ =
π

30
(3.58)

This guidance law is secondary to the first and once the second obstacle is

reacquired in the FOV, the first law has precedence. Even though the first guidance

law has preference, the results of the simulation show that both obstacles rarely stay

within the FOV of the camera for any length of time. Therefore the second guidance

law determines the MAV’s trajectory. Interestingly enough, this always results in an

unimpeded trajectory - see Fig. (3.7).

An additional guidance law is needed to handle the case when there are no

obstacles in the FOV. This law returns the trajectory to its original heading which is

orthogonal to the line between the obstacles. This is intuitive because any trajectory

that is temporarily modified for the purpose of obstacle avoidance must return to the

original planned path.

3.3.3 Many Obstacles and Range Limits. The next step entails the handling

of multiple obstacles or features, and limiting the range of the camera’s FOV. This is

accomplished to simulate the multiple features objects in a realistic scene and actual

range limitations of the sensor. The features are in the left and right hand side of the

FOV, arranged in a row, with one directly in the middle. There are several obstacles

that are in the MAV’s path but the objects must be within the range limit of the FOV.
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Figure 3.6: The trajectory is shown with the field of view as green lines
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Figure 3.7: The trajectories are shown with the field of view restriction of 120◦
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The center of mass of the feature in the right hand side of the FOV is calculated and

similarly, the center of mass of the feature in the left hand side is also calculated.

These centers of mass points become the new points B and C - see Fig. 3.3. These

new reference points are then subjected to the previously discussed guidance laws.

This is a dynamic process because as the MAV moves through the scene, the average

position of the obstacles will change - see Fig’s 3.9, 3.10, 3.11 and 3.8. The average

position is determined by both the position of the vehicle and the centered obstacle.

The centered obstacle’s position will be averaged with the left side objects if it is

within range and the object is to the left of the vehicle’s heading. Conversely, it will

be averaged with the right hand side objects if it is within range and on the right

hand side of the vehicle heading. This produces MAV trajectories that avoid all the

obstacles in the scenario - see Fig. 3.8
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Figure 3.8: The trajectory is shown with center of mass position changes
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Figure 3.9: The vehicle here is shown for the trajectory initiating from point (0.5,1).
Typical MAV trajectories, in a multiple obstacle scenario, ±60◦ FOV and sensor range
limit. In this figure, the vehicle can be seen in the middle of the obstacles with red
asterisks depicting the mean location for all the obstacles captured from the camera
and green lines the FOV.
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Figure 3.10: The vehicle here is shown for the trajectory initiating from point
(0.25,1). In this figure, the vehicle is traversing the left trajectory and the obsta-
cle means are depicted with green asterisks.
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Figure 3.11: The vehicle here is shown for the trajectory initiating from point
(0.75,1). In this figure, the vehicle is traversing the right trajectory and the mean
obstacles are the purple asterisks. These asterisks will update for all examples as the
vehicle moves through the scene and new obstacles can be captured while others will
fall out of the FOV.

3.4 Stability

The fact that the “ideal” trajectories emanating from the orthogonal bisector of

the segment |BC| and with initial course angle φ0 = arcsin(1/2r0) are unstable is re-

vealed by an application of Lyapunov’s first method. The dynamics matrix is obtained

by linearizing the dynamics about the nominal ideal trajectory and its eigenvalues are

shown to be unstable.

3.4.1 Line of Sight Rate Balancing Guidance. The nonlinear dynamics are

ṙ = − cosφ,

θ̇ = −sinφ

r
,

tanφ =
r sin θ

2r2 + 1 − 3r cos θ
.
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To investigate the stability of the “ideal” flight path, which is the orthogonal bisector

of the segment |BC|, we again use the first method of Lyapunov. Linearization yields

the dynamics matrix

A =





sinφ∂φ
∂r

sinφ∂φ
∂θ

sin φ
r2 − cos φ

r
∂φ
∂θ

− cos φ
r

∂φ
∂θ





∣

∣

∣

∣

∣

orthogonal
bisector

We must calculate the partial derivatives

∂φ

∂r

∣

∣

∣

∣

∣

orthogonal
bisector

=
1

2r3

1 − 2r2

√
4r2 − 1

,

∂φ

∂θ

∣

∣

∣

∣

∣

orthogonal
bisector

= − 1

2r2
.

⇒
The linearized dynamics matrix which is parameterized by r, is

A(r) =





1
4r4

1−2r2√
4r2−1

− 1
4r3

4r2−1
4r5

√
4r2−1
4r4





The characteristic equation for the determinant of A(r) is the quadratic equation

8r6 λ2 − 4r4

√
4r2 − 1

λ+ 1 = 0

leading to

λ =
1

4r3
√

4r2 − 1
(r ±

√
2 − 7r2), r >

1

2

for
1

2
< r <

√

2

7
, λ is real
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and

lim
r→ 1

2

1

4r3
√

4r2 − 1
(r −

√
2 − 7r2) = 0 and lim

r→∞
Re(λ) =

1

8r3

For r ≥
√

2

7
, λ is complex, the modulus |λ| =

1

2
√

2r3
and Re(λ) =

1

4r2
√

4r2 − 1
;

The modulus of the complex eigenvalues is plotted in Figure 3.12.

In summary,

Re(λ) > 0 ∀ r > 1

2

Both eigenvalues are unstable. The eigenvalues of the linearized dynamics matrix A

are unstable at any range.

3.4.2 Optic Flow Balancing Guidance. The nonlinear dynamics are in part

specified by the function - see Equation (3.38).

f(r, θ, φ) ≡ cos2 φ

r

sinφ+ r sin(θ − φ)

(1 + r2 − 2r cos θ) cos2 φ+ [− cos(θ + φ) + r cosφ]2

We need to evaluate the partial derivatives of f along the orthogonal bisector of the

segment |BC|, where

sinφ =
1

2r

cos θ =
1

2r

θ + φ =
π

2
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Note that the expression in the denominator of the function f , >

{(1 + r2 − 2r cos θ) cos2 φ+ [− cos(θ + φ) + r cosφ]2}
∣

∣

∣

∣

∣

orthogonal
bisector

=
4r2 − 1

2
,

and

sinφ+ r sin(θ − φ)

∣

∣

∣

∣

∣

orthogonal
bisector

= r.

Hence, we calculate the partial derivatives along the orthogonal bisector

∂f

∂r
= − 1

r3
.

Similarly,

∂f

∂θ
=

−1

r2(
√

4r2 − 1

and,

∂f

∂φ
=

−1

r2(
√

4r2 − 1

The application of Lyapunov’s first method requires one to obtain the linearized

dynamics matrix A. The linearized dynamics matrix, which is parameterized by r

and is (r > 1
2
), is

A(r) =
1

2r











0 0 1

1
r2 0 −

√
4r2−1

r

− 2
r2 − 2

r
√

4r2−1
− 2

r
√

4r2−1
.










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To find the eigenvalues, set

det











−λ 0 1

1
r2 −λ −

√
4r2−1

r

− 2
r2 − 2

r
√

4r2−1
− 2

r
√

4r2−1
− λ











= 0

which gives the characteristic Equation

λ3 +
2

r
√

4r2 − 1
λ2 +

2

r3
√

4r2 − 1
= 0

Setting λ := λ
r

yields the simpler cubic equation

f(λ) ≡ λ3 + aλ2 + a = 0, (3.59)

where

a =
2√

4r2 − 1
.

The roots of of the cubic polynomial are investigated. First observe that f(λ) →
−∞ for λ→ −∞ and we calculate f(−a) = a > 0. Hence, there exists a real root

λ1 < −a.

Furthermore, the product of the cubic polynomial’s three roots is the negative of the

free coefficient of the cubic polynomial, namely, it is −a. From this we conclude that

the product of the remaining two roots, λ2λ3 > 0. Hence, the remaining two roots

are either a complex pair, or, if the roots are real, they are both positive or are both

negative. Next, the sum of the roots of the polynomial is the negative of the coefficient
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of λ2, namely

λ1 + λ2 + λ3 = −a

Hence

λ2 + λ3 = −a− λ1

> −a− (−a)

= 0

Therefore, the roots λ2 and λ3 of the polynomial are either positive or are complex

with a positive real part. Next, differentiation of the function f(λ) and setting the

derivative to zero gives the quadratic equation in λ: , 3λ2 + 2aλ = 0. A second

differentiation reveals that the root λ = −2
3
a is a local maximum and the root λ = 0

is a local minimum. Since f(0) = a > 0, we deduce that the roots λ2 and λ3 are a

pair of complex roots with a positive real part ∀ r > 1
2
.

Hence, similar to the LOS rate balancing guidance, also optic flow balancing

guidance causes instability at any range. As shown in Figure 3.12, the guidance

instability becomes worse at closer ranges.

3.5 3-D Simulation

This section applies the theories and analyzes how well it performs in a slightly

more complicated 3-D case. The 3-D case is broken down into a two channel approach.

One channel being horizontal and the other being vertical. All of the commands

are predicated on the assumption that the center of the FOV is the focal point for

all possible collisions and the path in which the vehicle is headed. Then the focal

plane is halved vertically for the horizontal channel and horizontally for the vertical

channel. Each channel applies the LOS equalization and looming detection algorithms

to control the vehicle trajectory through the scene. The scene is generated using
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Figure 3.12: The figure displays the roots to the stability Equation (3.59) given a
value of r

MATLAB R©. An environment is created with buildings and other possible obstacles,

which are created in 3-D with multiple points established for calculation purposes.

Within the scene, an air vehicle is depicted as a point in the 3-D space and is iterated

through the scene by adding translation velocity values at each time step. The scenario

is then iterated a number of times to complete the path through the entire scene and

return the vehicle to the preplanned trajectory. The calculation of optic flow is then

accomplished and stored. The stored information is then exploited using segmentation

and image morphology. All parameters are derived for LOS rate equalization and

looming. The control law then uses the information given to update the control

parameter φ̇. Then the position is updated and repeated through the scene - see

Fig. 3.13. From this simulation, it will show that the LOS equalization and looming

detection with established control law provides for a possible solution for collision

avoidance.
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Figure 3.13: Flow chart depicting the process for which the theory is implemented
in a 3-D scenario.

3.5.1 Simulation Environment. The simulation is conducted in MATLAB R©.

The MATLAB R© environment easily handles large matrices. This makes it perfect for

the simulation due to the scene information, iterations of position update, and itera-

tions of the optic flow which all require large matrix manipulation. The simulation is

a series of iterations that update vehicle and camera positions in the scene, calculates

ranges from the focal plane to the obstacles in the scene, compares current ranges to

the previous iterations of each range to calculate a translation in 3-D space for the

calculation of the optic flow fields. The simulation captures what would be seen from

real imagery with an application of a good optic flow algorithm. The following will

describe the scene, vehicle trajectory, and the optic flow development in more detail.
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3.5.1.1 Scene Generation. The scene itself is a series of polyhedra

that are arranged in a Cartesian coordinate plane. These polyhedra or obstacles, are

placed in various locations and at varying heights, widths, and depths. The scene is

meant to resemble an urban environment in which there are many buildings and where

a MAV would typically be used -see Fig. 3.14. This urban scene can be modified to

meet multiple different looks, which was ideal for performing numerous runs through

the scene for testing the algorithms and control law (see Chapter IV).

Figure 3.14: Generic Urban Scene

The scene generation is a fairly straight forward process. It begins with devel-

oping the XY plane for the horizontal channel. The XY plane was from 0 to 20

dimensionless units, creating a square grid with a matrix that incremented in steps of

0.1. Next, the midpoint was found in this plane for use in positioning each obstacle.

To position an obstacle, the Z coordinate must be defined in the context of 2-D space,
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therefore a midpoint was found using the length of the XY plane and dividing it by

two. Subsequently, a Z matrix of same size as X and Y was constructed. Now that

there was a midpoint and a Z matrix, the values in this matrix were set by selecting

a range of X and Y matrix positions and setting the Z matrix in these locations to a

specific value. Once the entire Z matrix values are set, the X, Y , and Z matrices are

used to extrude obstacles into 3-D space. These steps are repeated for the vertical

channel except that it began with a grid of the Y Z plane, and extruding in the X

plane.

3.5.1.2 Vehicle Trajectories and Position. The vehicles position and

trajectories are calculated from an initial position and orientation. The position

and orientation are both given in vectors containing three values. For the position

the three values correspond to the 3-D rectangular coordinate system x, y, and z

respectively. The orientation vector’s three values correspond to pitch, roll, and yaw.

The orientation is needed specifically for updating the orientation of the camera.

This ensures that the optic flow calculations made are indeed for the objects directly

in front of the vehicle (see Section 3.5.3). Then two motion vectors are initialized

that describe the motion of the vehicle. The first vector represents translation in the

positive x, y, and z directions. The second vector is the pitch, roll, and yaw values

respectively. The translation vector was initially set with a velocity that portrays

the preplanned navigation path. The orientation motion vector is initially set to zero

which symbolizes no rolling, pitching or yawing. This is done to simplify the optic flow

calculations. These motion vectors are used to update the position and orientation

with iterations of the motions added to both position and orientation. The simulation

increments time steps by updating the motion vectors in each iteration. The motion

vectors get modified based on the control law which attempts to maneuver the air

vehicle without a collision (see Section 3.5.4). After each iteration, the position is

updated and the new position is plotted in the scene to display the collision free
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trajectory - see Fig 3.15. The simulation is iterated until the MAV is completely

navigated through the scene.

Figure 3.15: Urban Scene with Trajectory Through the Scene

3.5.2 Optic Flow. The development of the optic flow field is critical to being

able to apply the LOS equalization and looming detection algorithms. To calculate the

optic flow there are a number of parameters required that include the following; focal

plane resolution, FOV, the position of the camera relative to the vehicle, orientation

of the camera (roll, pitch, yaw), and the range of the camera’s focal plane. The focal

plane resolution is analogous to an image resolution with a number of pixels in a 2-D

plane. It is initialized by a 2-D matrix with even number of rows and columns. The

FOV is established as 120◦ with center of the FOV at 0◦ and with ±60◦ in azimuth

and elevation. This is done in vector format with azimuth first, and then elevation.

The camera’s position is calculated in 3-D rectangular coordinates and the camera’s
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orientation as a vector of the three components roll, pitch, and yaw, identical to

the vehicle’s position and orientation. The camera’s position and orientation is done

relative to the vehicle’s center. In this case, the camera is bore sighted with the

vehicle and all of the values are set to zero and updated identically with the vehicles

position and orientation. The range is set to one for all pixels in the focal plane so

that each range converted easily into unit vectors. Now that all of the parameters are

initialized, some of these will be updated or used to calculate the optic flow.

3.5.2.1 Vectorization of Pixels. In order to determine what each pixel

captures in the simulation, the FOV is divided by the number of pixels in each direc-

tion x and y from the resolution separately. The two angle values then become the

interval angles between each pixel and from center of the image. This is accomplished

where the x interval angles are azimuth and the y interval angles are elevation. The

pixel resolution rows correspond to the elevation (EL) and the columns correspond

to the azimuth (AZ). These are then used to calculate the unit vectors for each pixel

in the following way,

Xpixel = cos(EL)sin(AZ) (3.60)

Ypixel = cos(EL) cos(AZ) (3.61)

Zpixel = sin(EL) (3.62)

Di,j,1 = Xpixel (3.63)

Di,j,2 = Ypixel (3.64)

Di,j,3 = Zpixel (3.65)

Where i and j are the row and column locations in the matrix representing the pixel

location. The unit vectors Di,j are known, and the resolution of the scene must be

determined. This is determined by using the length of the scene (20) divided by the

total number of indexes used to build the matrix grid for each X, Y, and Z. These
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resolutions are set into a vector (Xres, Yres, Zres) and multiplied by the pixel unit

vectors Di,j to attain a new set of pixel resolution vectors (RV x, RV y, RV z) that

are a fraction of the unit vectors length. Now these new vectors have a new range

vector calculated by, Resmag =
√

R2
V x +R2

V y +R2
V z The value Resmag is explicitly

how the range for each pixel of one can represent the total distance in the scene.

These parameters will be instrumental in calculations for the next section.

3.5.2.2 Range to Obstacles. The magnitude of the range vector Resmag

is used by adding this value along the pixel’s range vector direction. While the position

of the camera is known in relation to the scene this length along the pixel range vector

can also be determined relative to the scene. This range vector is added in succession

until the relative length of the scene is reached or until a value in that position grid of

the scene is reached. This represents the distance to this obstacle along this particular

pixel direction. This length is stored as a range value for that particular pixel location.

The calculation is reaccomplished for each pixel in the FOV. A new matrix (M) is

calculated by dividing one by the range to get a matrix the same size as range. Then

calculations must be made to accommodate the translation and rotation motions of

the vehicle and update the pixel unit vectors. This range is then used to create a

projection into a unit sphere via Equation.(3.66). This was done as follows

FF = −M [T − (T •D)D] −R×D (3.66)

Xflow = FF • Fx (3.67)

Yflow = FF • Fy (3.68)

where R is the rotational motion (roll, pitch and yaw), D is the pixel unit vector

matrices described in Equation.(3.60), T is the translation matrix, FF is the spherical

projection of an object in the camera’s view [22], Xflow is the magnitude of the optic

flow in the horizontal plane for each pixel, Yflow is the optic flow in the vertical plane

also for each pixel, Fx is the 3-D matrices for the unit vector out the right of the

focal plane, Fy similarly is matrices for the unit vector out of the top of the focal
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plane, and • is the dot operator. With these two values, one single vector(Oflow) with

magnitude and direction is calculated by combining Xflow and Yflow in the 2-D plane

by a Euclidean distance calculation Oflow =
√

X2
flow + Y 2

flow. These vectors are then

plotted and updated for each iteration of the vehicle motion per time step.

3.5.3 Obstacles. One of the most important steps before applying the con-

trol law is to process the optic flow vectors. This is achieved using image processing

techniques. First, the flow vectors that are induced by objects of interest must be

segmented or separated from the rest of the vectors. Once a region of interest (ROI)

is segmented, image morphological techniques are used to combine vectors close to-

gether. This guarantees that objects close together or missed vectors in between

vectors of the same obstacle would be evaluated as a single obstacle. Then a centroid

is found for each ROI and LOS angles and looming values are calculated for later use

by the control laws.

3.5.3.1 Segmentation. The segmentation of the flow vector field is

significant for the correct identification of obstacles in the field of view. This stage is

critical for determining how many ROIs there are and where they are located in the

FOV. Segmentation is accomplished in three different ways, one by applying a curl

operator to the vector field and the two others by a vector averaging technique. This

is done to determine which would provide a better solution. This image processing

step is the critical point in the development of the control law.

The first technique applied is the calculation of the curl operator. The curl

operator is a gradient-based expression which uses magnitude and direction changes

between flow vectors to determine possible rotation points - see Fig. 2.8. This method

is used because it is good at determining changes in the vectors across the flow field.
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This calculation is accomplished in the following way based on Equation (2.37) [21] ,

Xgradi,j =
∂(Xflow)

∂(AZ)
(3.69)

Y gradi,j =
∂(Yflow)

∂(EL)
(3.70)

curli,j = Xgradi,j − Y gradi,j (3.71)

The curli,j is the same size as the pixel resolution. Now this matrix is stored and then

a binary mask is set to identify the ROI’s. This is achieved by setting ones for values

greater than a threshold value, τc and zero for those less than τc. This threshold

value is empirically set to 0.1 as this curl value is identified from the data as possible

obstacles. This threshold is dynamic as it would change with varying velocities. Then

the mask is passed into the morphological algorithm to merge ROIs from the matrix

for simplification of the obstacles and combining closely located vectors (see Section

3.5.3.2) [1].

The alternate methods use a flow field averaging technique. This simply finds

the mean, (µ), of the flow field vector values for the entire field. This is calculated by

µ =
1

N

Pr
∑

i=1

Pc
∑

j=1

Di,j (3.72)

where N is the total number of pixels, Pr is the total number of pixel rows, and Pc

is the total number of pixels columns. Once the mean value is established, there are

two ways to segment the obstacle vectors. First, vectors that are greater than µ+ 2σ

are found and segmented out with the binary mask. The quantity σ is the standard

deviation and is calculated by

σ =

[

1

N − 1

N
∑

i=1

(Di,j − Fmean)2

]
1

2

(3.73)

Second, any vectors that are larger than 2µ are segmented out as mentioned before.

The mask of the flow field converts the index locations to a one for vectors greater
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than 2µ and zero for all others. This binary mask is processed with a morphological

algorithm to merge vectors. This is accomplished for both averaging techniques.

3.5.3.2 Image Morphology. The morphology of an image is broken

into two distinct parts, dilation and erosion. “Dilation adds pixels to the boundaries

of objects in an image, while erosion removes pixels on object boundaries” [1] -see

Fig. 3.16.

Figure 3.16: Illustration of Dilation (reprinted from [1])

Erosion removes the ones on the boundary of the matrix shown as a shaded

region in Fig. 3.16. Each operation, dilation and erosion, uses a structuring element.

The structuring element shapes the dilation and erosion. A structuring element is an

arbitrarily shaped matrix of ones or zeros [1], in this case ones are used. The center

pixel of the element will set the pixel location of the mask to one if the neighboring

pixels in the mask are ones. In this case, the binary mask developed in Section

3.5.3.1 is the binary image and the structuring element is a [1 × 3] matrix of ones -

see Fig 3.17 [1]. This dilation is then applied to the binary mask. Any objects close

together as defined by the structuring element are morphed into a single object. Then

the erosion operation is applied to return an object to normal size maintaining any

object now joined -see Figs. 3.18(a), 3.18(b), and 3.18(c).

Now that closely located objects are morphed into a single object, each of the

objects are labeled. This is accomplished by a function in MATLAB R© called “BWLa-

bel” [1]. This function assigns a unique number to each ROI. Now that the ROIs are
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Figure 3.17: Dilation with a Structured Element (reprinted from [1])

Binary Image

(a) Binary image before morphology

Dilated Binary Image

(b) Dilated image

Eroded Binary Image

(c) Eroded image

Figure 3.18: (a) is the original binary image. (b) shows the binary image that has
been dilated joining closely located objects. (c) displays the new image after the
erosion process. Notice that the yellow rectangles highlight areas that are now joined.
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labeled, the centroid for the region is found using “regionprops” [1]. This finds the

centroid of each ROI. Non-integer centroid values are rounded to the closest integer

value. The centroid row and column values are then stored for use in calculations in

the LOS equalization and looming detection algorithm.

3.5.3.3 LOS Equalization and Looming. The LOS equalization and

looming detection algorithm is similar to that in Section 3.3. The same principle is

used applying the guidance control law using φ̇ to equalize the LOS changes to each

object. One slight difference is that in the 3-D simulation, the vehicle is controlled

by an input of translation and roll with a simulated focal plane being derived. This

implies that θ, ∠A, and Ȧ can be calculated directly. So, in this case, Equation (3.17)

was algebraically manipulated to get,

φ̇ =
Ȧ

1 − cos(A−φ)2

cos(φ)2

, (3.74)

where, Ȧ = Ak − Ak−1. (3.75)

Before this could be evaluated, the parameters θ, ∠A, and Ȧ, must be calculated. To

implement 3-D collision avoidance, the 2-D LOS rate equalization equation is used in

two channels, horizontal and the vertical channels. The horizontal channel develops

its own optic flow field based on objects in the X and Y mesh grid. This flow field

is then processed as mentioned in the previous sections. Then the locations of the

centroids captured are used to seek the two coordinates closest to the center of the

FOV. When these center coordinates are found, the column value is used to calculate

the two angles θ and ψ (see Section 3.3). The index value for column of the centroid

that is larger than the center indexed value corresponds to the right side of the focal

plane and is used to find θ. This centroid coordinate is then used to pick out the unit

vectors from matrix D (see Section 3.5.2.1) and calculate θ as

θ = arctan
(Di,j,2

Di,j,1

)

. (3.76)
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The index value for the column of the centroid that is smaller than the center index

becomes the left side of the focal plane and is used for finding ψ as

ψ = arctan
(Di,j,2

Di,j,1

)

. (3.77)

Based on Figure 3.3, the ∠A is the angle from A to points B and C. This angle was

easily calculated as

∠A = π − (θ + ψ). (3.78)

The final parameter left is φ and it is calculated as

φ = H − θ, (3.79)

where the heading H is the actual direction of movement of the vehicle. It is always

initiated at H0 = π/2 and updated each iteration by φ̇. Now that all of the param-

eters are calculated, the LOS rate equalization algorithm has everything it needs to

calculate φ̇ for the control law. The vertical channel is implemented almost identically

except the centroid, is substituted for the row instead of column. Furthermore, the

bottom half of the focal plane is analogous to the right side plane in the horizontal

channel and top half same as left side. The rest of the calculations are identical but,

inserting pitch(P0 = 0) instead of heading.

Next, the looming algorithm is derived in the same manner as in Section 3.3.1.

First, the segmentation part must identify a centroid in the center of the FOV. Then

this centroid has an associated minimum and maximum value corresponding to the

edges of the object in the scene. These values for the minimum and maximum be-

come fc and fb respectively used in Equation (3.41). They are tracked over successive

iterations and ḟc and ḟb are calculated. The looming value is computed from Equa-

tion (3.42) for the current iteration and stored. The looming values are iterated and if
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the updated values are larger than the previously stored values looming is occurring.

Once looming is detected, the control law is used to make a direction change.

3.5.4 Control Law. The Control Law is the compilation of all the infor-

mation devised in the previously stated algorithms. This control makes the actual

changes to φ̇ to ensure that a collision is avoided. This is attained in a step by step

manner. First, decide whether there is an actual object in the FOV as described ear-

lier. If there is an object, it makes a choice for direction change depending on whether

there are no objects, a single object, or two objects. This correction in direction is

the final step in the collision avoidance algorithm. Each decision made for the three

possible outcomes can be seen in the following sections and Figure 3.19.
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Figure 3.19: Flow Chart Depicting Control Law Process

67



3.5.4.1 No Detected Obstacles. The case where no object is detected

requires a simple decision. For this case, if no actual object is detected through image

processing, the decision is to continue on the pre-planned path. This is simple if

the MAV is currently in the direction of the initial conditons (H0/P0) then φ̇ = 0.

Otherwise, the heading or pitch φ̇ must be changed to bring the direction back to

H0/P0 and is dependent on the current heading or pitch. For heading or pitch greater

than H0/P0, φ̇ = −π/18. For heading or pitch less than H0/P0, φ̇ = π/18. The

changes in φ bring the vehicle back to H0/P0 in an incremental fashion, where 1
18

creates a quick return to the initial direction. This is because no obstacles are in the

FOV so it brings the vehicle back to the initial heading and pitch.

3.5.4.2 Single Obstacle. With one object detected in the FOV, the

control law needed is based on where the object appears in the camera focal plane.

The most important aspect to consider is the instance when the object is centered in

the FOV(Cent). This implies the object is directly in front of the vehicle and that a

collision is imminent. If looming is detected, the centroid value for the appropriate

channel (horizontal or vertcial) is used to determine which half of the FOV contains

most of the object. Knowing this initiates a turn in the opposite direction from the

object - see Equation(3.80).

if centroid > Cent, φ̇ = π/30, (3.80)

if centroid < Cent, φ̇ = −π/30, (3.81)

The turn rate factor 1
30

is representative of a miniature vehicle turn radius to make

the simulation more realistic. For the case when the object is clearly in the left/top

or right/bottom half of the focal plane, the commanded control is to turn away from

the object in the following way,

φ̇ = π/30 if right/bottom (3.82)

φ̇ = −π/30 if left/top (3.83)
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The single objects commanded control is essentially based on which half of the plane

the object fell into, but if the object is centered in the FOV it makes the same

commanded control. The singular case is exaggerated slightly to create a strong

response to the objects in the scene. The control for multiple objects in the FOV is

more complicated.

3.5.4.3 Multiple Obstacles. The scenario with two different objects in

the scene presents a unique problem. If there are two objects in the same half of the

focal plane, or in opposite halves, how should the MAV/UAV be commanded? The

problem is simplified by eliminating extra objects detected in the half that are the

furthest from the center. If there is only a single object remaining, it is controlled

as discussed in Section 3.5.4.2. If there are two objects remaining, but in opposite

halves of the focal plane, then LOS rate equalization is called for and φ̇ is adjusted

according to Equation (3.74).

Now that all the possibilities of the objects in the scene could be accounted for

and the commanded control is implemented in the previously detailed method, the

next step is to simulate the guidance laws developed by actual implementation in a

scene that mimics a real environment. The next chapter will describe the scenarios

and the results from these simulations.
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IV. Design of Experiments and Results

4.1 Introduction

Simulation is required to visualize the resulting complicated kinematics, validate

the guidance law equalizing the LOS rate, and to accomplish the looming calculation.

Both of these are measured with optic flow from a 3-D scene. The interpretation of

the optic flow field and then applying the LOS rate balancing guidance laws need to

be analyzed, to gather understanding of the capability of this obstacle collision avoid-

ance guidance algorithm. Analysis of the trajectories generated in these simulations is

imperative to demonstrate the obstacle avoidance guidance control law. In this chap-

ter, the simulations are detailed for effectiveness and experimentation configurations

are discussed. (give unbiased results to support the claim that collision avoidance can

be achieved with LOS rate equalization and looming detection.)

4.2 Experiments

The experiment entails a series of 3-D scenes and an unmanned air vehicle that

navigates through each scene. Fourteen different scenes are generated to exercise

the guidance law. The air vehicle is initiated at various locations before traversing

the scene. The various initial locations are used to demonstrate as many different

decision points as possible for the air vehicle’s guidance law and to analyze the logic

of the control choices. The vehicle is tracked as it traverses the scene and position

plotted in the scene and displayed. This provides visual confirmation of a collision

or, a lack thereof. Success is based on collision avoidance alone; any collisions in

the simulation constitutes a failure. The 14 scenes, initializations, and trajectory

mappings are discussed in the ensuing subsections.

4.2.1 Scene Descriptions. The scenes are developed as described in Section

3.5.1.1. Here, the exact layout of each scene is detailed and how it might represent

a realistic scene. The first scene is known as the “ lattice” - see Fig. 4.1. It is a

trio of obstacles in the vertical direction that extrudes up from the XY plane to the
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Figure 4.1: Scene 1 “lattice”

maximum height of Z, and another trio of obstacles in the horizontal direction that

extends from the Y Z plane across the scene to the maximum length of X. Each

one of these obstacles is a 1 × 1 × 20 polyhedron. Even though they are in separate

channels for optic flow calculations, they are plotted on the same figure and give the

appearance of distinct obstacles in 3-D. The first one looks like a large tic-tac-toe

board and the second one like a large cross. The cross is situated behind the tic-

tac-toe and center out on its middle square. This configuration splits the first series

of obstacles in half, which is done to exercise multiple instances of the guidance law.

Scene 2 is known as, the “bridge” - see Fig. 4.2. The bridge is four 1×1×20 polyhedra

in the XY plane and 1 × 5 × 20 polyhedra in the Y Z plane. The four obstacles in

the horizontal, XY plane, are configured with two having equal spacing in the X

direction and two having equal spacing in the Y direction. The single obstacle in

the vertical, Y Z plane, is extended across the four horizontal obstacles connecting

them and giving the appearance of a bridge. Scene 3 is known as the “tunnel” - see

Fig. 4.3. The tunnel is square and is shaped by four separate objects. There are

two objects in the horizontal plane and two objects in the vertical plane. They are

organized in a way that it creates a 5×5×10 square tunnel. This obstacle challenges

71



Figure 4.2: Scene 2 “bridge”

Figure 4.3: Scene 3 “tunnel”

the vehicle to simultaneously center itself vertically as well as horizontally. Scene 4

is known as the “stairsteps” - see Fig 4.4. The stairsteps is a scene that has the

same trio of obstacles in the XY plane as in the Lattice scene, but it also has six

separate polyhedra that extend across the scene in the horizontal direction. Three of

these are located quite low and appear as an ascending staircase. The other three are
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Figure 4.4: Scene 4 “stairsteps”

placed at a high position and appear like descending stairsteps. The challenge here

is for the vehicle to climb and drop to center vertically while still avoiding the center

obstacles in the horizontal channel. Scene 5 is known as the “horizontal wall” - see

Fig. 4.5. The horizontal wall is in the horizontal plane and runs perpendicular to

Figure 4.5: Scene 5 “horizontal wall”

the vehicle’s direction of motion. The wall is quite large and extends across most of
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the scene. This simple obstacle will completely cover the entire FOV of the vehicle’s

camera for most locations. This is probably the most difficult obstacle to avoid and

challenges the algorithm in low contrast environments. Scene 6 is the “vertical wall”

- see Fig. 4.6. The vertical wall is similar to the horizontal wall except it is extends

Figure 4.6: Scene 6 “vertical wall”

across the scene from the Y Z plane. This wall again is large enough that it will

completely blanket the FOV of the camera. This obstacle ensures that the vertical

control channel works similar to the horizontal control channel. The two channels

should give similar results. Scene 7 is the “horizontal walled alley” - see Fig. 4.7.

This scene consists of two walls parallel to the direction of the vehicle’s motion. The

two walls are narrow but long and run most of the length of the Y -axis. They reach

a height of 20 units. This obstacle is specifically used to challenge the guidance law

for its ability to center itself through the alley and avoid the walls. This scenario

is sometimes problematic where optic flow balancing for collision avoidance guidance

is used. Scene 8 is the “vertical walled alley” - see Fig. 4.8. This scene again is a

replica of the horizontal walled alley, but in the Y Z plane, and exercises the vertical

control channel. Scene 9 is the “horizontal walled alley with bars” - see Fig. 4.9.

This scene is exactly the same as the horizontal walled alley but with added bars that
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Figure 4.7: Scene 7 “horizontal walled alley”

Figure 4.8: Scene 8 “vertical walled alley”

extend from the Y Z plane. These extended bars are designed to add complexity and

challenge the guidance law to stay centered horizontally through pitch angle changes.

The idea is that slight perturbations might destabilize the guidance law (see Section

3.4.2). Scene 10 is the “row of buildings creating an alley” - see Fig. 4.10. This scene

is two series of five 2 × 2 × 20 buildings that are aligned parallel to the direction of
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Figure 4.9: Scene 9 “horizontal walled alley with bars”

Figure 4.10: Scene 10 “row of buildings creating an alley”

the vehicles motion, as before. This scene has two rows of buildings creating an alley,

but this time with discontinuities. In this scenario, the vehicle is expected to traverse

the center of the alley. The discontinuities test its ability to handle the fluctuations

in the optic flow. Scene 11 is the “sparsely positioned buildings creating an alley” -

see Fig. 4.11. In this scene, the concept is similar to that of the last scene except,
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Figure 4.11: Scene 11 “sparsely positioned buildings creating an alley”

there are fewer buildings and they are spaced farther apart. The buildings are still

in a line parallel to the direction of vehicle motion. Scene 12 is the “row of narrow

buildings creating an alley” - see Fig. 4.12. In this scene, the size of the buildings are

Figure 4.12: Scene 12 “row of narrow buildings creating an alley”

narrowed down to 1 × 1 × 20. This creates less optic flow vectors that can be used

for the guidance law. This shows how the difference in detections might affect the
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guidance. Scene 13 is the “up down” - see Fig. 4.13. This scene consists of two walls

Figure 4.13: Scene 13 “up down”

from the vertical plane. The first wall, closest to the air vehicle, is the lowest wall; a

20 × 2 × 10 polyhedron. The next wall farthest away is the same dimensions as the

first wall but positioned at a higher elevation. This wall again is 10 units high but

sets 10 units above the surface. The title of this scene alludes to what is expected

of the vehicle’s trajectory. It tests the vehicle’s ability to redirect itself and handle

large obstacles that are close compared to those same obstacles farther away. Scene

14 is the “urban scene” - see Fig. 4.14. This scene is considered most important

and is designed to represent an urban environment. It has a complex arrangement of

buildings, towers, power lines, and a low hanging walkway. The buildings and towers

are in the horizontal plane where power lines and the walkway are in the vertical

plane. The buildings are constructed in the manner described previously, and are

offset in locations to make it difficult to traverse the scene. The buildings also vary

in height and width. Towers are extended from the top of two buildings and one is

located toward the rear of the scene. Each tower is 2×2×20 in size. The power lines

drawn using the smallest increment of size possible, which is 0.1, and in the Y and

Z directions, but are extended across the X axis at varying lengths. The walkway is
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Figure 4.14: Scene 14 “urban scene”

2 units in the Y direction and 1 unit in the Z direction, but extended across three

buildings and appearing to connect them. This scene is the most complicated and

strives to challenge the vehicle’s ability to avoid all obstacles types oriented in an

extremely cluttered environment.

4.2.2 Simulation Initialization. The initialization of the simulation is a very

important step. There are multiple parameters that can be set and the parameters

include: pixel resolution, velocity, heading, pitch, position, orientation, and scene.

All of these are initialized for each run of the simulation. Each scene is created and

stored previous to the simulations execution. The initialization of the scene is the

first step for running the simulation. The stored scene’s information is loaded just

before the rest of the parameters are set. Then the initial position vector, Pv, is fixed
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for the run by randomly choosing the X0 and Z0 location, while always Y0 = 0.

Pv = [X0 Y0 Z0] = [m 0 n] (4.1)

Rv = [pitch0 roll0 yaw0] = [0 0 0] (4.2)

(4.3)

where m and n are random numbers, generated with a random number generator on

the interval [119] to keep the UAV away from the edges of the scene and engaging

obstacles. The X0 and Z0 locations are randomly initialized to create an unbiased

experiment. The Y0 coordinate remains constant at 0 because the vehicle travels

in the positive Y direction, therefore, initializing at this position is necessary. The

orientation vectorRv is initialized to all zeros. This is indicative of wings level, heading

due north, and no pitch. This starts the vehicle in a nominal position starting into

the scene allowing adjustments from there. The pitch variable, P , is set to 0 while

the heading variable, H is set to π
2
. This means that the pitch resets for level flight

in the XY plane and the heading will be parallel to the Y Z plane. The motion of

the vehicle is commenced without rotation motion, Rin, and only translation motion,

Ty, in the Y direction with a magnitude of 0.2. The initial conditions are set for the

translation with no rolling, pitching, or yawing initiated - see Equations (4.4) and

(4.5).

Tin = [Tx Ty Tz] = [0 .2 0] (4.4)

Rin = [pitch roll yaw] = [0 0 0] (4.5)

Next, pixel resolution is set. It is either established as a 20 × 20 pixel field with

resolution of 400 pixels -see Fig.4.15, or as a 50 × 50 pixel field with a resolution

of 2500 pixels -see Fig. 4.16. The second option is referred to as high resolution,

while the first option is referred to as low resolution in this thesis. Finally all of the
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parameters are initialized and the simulation is ready to run.
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Figure 4.15: Low Resolution Optic Flow Field of the Vehicle Flying Between Two
Obstacles see Fig. 3.15

This experiment is an iterative simulation that loops 100 times to complete

trajectories through the scene. The value 100 was chosen based on the initialized

translation velocity. If Ty0 = 0.2, then 100(Ty0) = 20, which is the length of the Y

axis. This means that the vehicle will traverse the entire scene in most cases unless

major turns are incurred from the guidance control logic. Before each new iteration

is started, the heading, H changes, and the pitch angle, P changes are updated as

(see Section 3.5.4 for φ̇)

H = H + φ̇h (4.6)

P = P + φ̇v (4.7)
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Figure 4.16: High Resolution Optic Flow Field Same Position as in Fig.4.15

where φ̇h denotes the control signal is the horizontal channel and φ̇v denotes the

vertical channel’s control signal. The new heading and pitch values were used to

update the vehicle motion vectors in the following way

Tx = V cos(P ) cos(H) (4.8)

Ty = V cos(P ) sin(H) (4.9)

Tz = V sin(P ) (4.10)

Rin(1) = P (4.11)

Rin(3) =
(π

2
−H

)

(4.12)
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where V is the magnitude of the velocity. This ensures that the total velocity remains

constant. Then the position and orientation vectors are updated as

Pv = Pv + Tin (4.13)

Rv = Rv +Rin (4.14)

After these are updated, the whole process begins again and repeats until the vehicle

completes all 100 iterations for each scenario.

4.3 Results

The results of the simulation show that using optic flow vector averaging and

using a threshold of the mean plus twice the standard deviation presents the best

results in this simulation for attaining collision avoidance. The method of curl seg-

mentation and using averaging with a threshold of the twice the mean, proved to be

less effective. These two segmentation methods did not fail completely but worked

well when sufficient ROIs are found. The results in Table 4.1 display the percentages

of avoidance for comparison.

4.3.1 Curl Segmentation. The curl segmentation method does not perform

as well as expected. This is primarily due to the the fact that it is a gradient-based

operator. This means that the curl operator finds areas of gradient changes, like edges,

very well. The operator works well for obstacles that are narrow but not for obstacles

that are considerably wide. Wide obstacles are defined as those that have more than

six units of width. For these obstacles, the curl operator identified edges left and

right or top and bottom as two separate obstacles and the image morphology could

not combine them. This is because of large pixel distances and morphology approach

used, which connects ROIs that are within two pixels of each other. This mistake

guides the vehicle directly into the obstacles and a collision ensues. The increase in

resolution from low resolution to high only exacerbated this problem. This is because
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Table 4.1: Number of Collisions by Segmentation Method for Each Scene; where
each number along the top row designated scene number, Tot. represents the total
number of collisions, and % Avd. is the percentage of avoidance through all the scenes

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tot. % Avd.

Curl
Low Res. 0 0 3 0 8 6 0 0 0 0 0 0 8 6 31 77.8

Curl
High Res. 1 0 6 2 6 6 2 2 2 2 2 0 4 5 40 71.4

Avg 2σ

Low Res. 0 0 1 0 9 1 0 0 0 0 0 0 6 0 17 87.9

Avg 2σ

High Res. 0 0 1 0 5 2 0 0 0 0 0 0 4 1 13 90.7

Avg 2 · µ
Low Res. 0 0 0 0 7 9 0 0 0 0 0 0 9 1 26 81.4

Avg 2 · µ
High Res. 0 0 1 0 6 8 0 0 0 0 0 0 8 0 23 83.6

with more pixels on the obstacle it takes a thinner obstacle to morph into one object.

This is noted by the increase in collisions with the high resolution runs using this

segmentation method - see Table 4.1. Successful navigation through a scene can be

seen in Fig. 4.17, but note that the obstacles are thin. The failure can be seen in

Figs. 4.18 and 4.19, but note that Fig. 4.18 is for low resolution and Fig. 4.19 is

for the high resolution. From these examples, a collision takes place in the higher

resolution scenario that would not occur in the lower resolution scenario.

4.3.2 Averaging Segmentation. The averaging segmentation method works

much better than the curl method. Averaging of the optic flow vectors is better at

finding significant flow vectors caused by obstacles. It provided ROIs much more

representative of the obstacles for the vectors that were above the given threshold.

The thresholds are µ+2σ and 2µ, where µ is the average of the flow vectors in the scene

and σ is the standard deviation. The two different thresholds perform almost equally

well when bias is removed. The first method using µ + 2σ does not perform as well

when the optic flow field is flooded with different obstacles. This is because when the
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Figure 4.17: navigation success with curl segmentation

Figure 4.18: navigation failure using curl segmentation

flow field is full of varying magnitudes of vectors, the distribution’s standard deviation

grows large. This means that using two standard deviations above the mean gives

no obstacles detected, when in fact, there are multiple obstacles. Even though the

deviation is large, using 2µ for a threshold that increases the likelihood that the closer
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Figure 4.19: navigation failure using curl with high resolution

obstacles (i.e. large magnitude vectors) are segmented. In this case, where using the

standard deviation failed, using twice the mean was successful - see Figs. 4.20, 4.21,

and 4.22. The second method entailing the use of 2µ does not perform well when the

flow field is mostly populated by vectors from one obstacle. This is due to the mean

of the distribution being skewed closer to the magnitude of the vectors created by the

obstacle. Using 2µ here provides no obstacle detection because 2µ falls outside the

vector’s distribution. Using µ + 2σ at this point would result in obstacle detection

because the deviation is not significant. For this distinct, case the second method

would fail when the first one would be successful - see Figs. 4.23, 4.24, and 4.25.

The two methods perform well and using either one accomplishes collision obstacle

avoidance for most cases - see Table 4.1. The method using µ+ 2σ has a slight edge.

Successful trajectories through the scenes for each of the two methods can be seen

in Figs. 4.26 and 4.27. The failure of µ + 2σ thresholding can be seen in Fig. 4.28

but the success of 2µ thresholding can be seen for the similar situation in Fig. 4.29.

The failure of 2µ thresholding can be seen in Fig. 4.30 but the success of µ + 2σ

thresholding can be seen in the similar situation illustrated in Fig. 4.31. The results
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Figure 4.20: Scene with Trajectory Depicting the Vehicles Location for the Follow-
ing Figs. 4.21 and 4.22
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Figure 4.21: Optic Flow Field Displaying Multiple Obstacles With Centroid (black
asterisk) Placed on the Imminent Obstacles and With Looming Detection (red aster-
isks) Using 2µ for Segmentation

in the table take into account two scenes that are intended to show the limitations of

the guidance algorithm for obstacle detection using optic flow measurement. Scenes
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Figure 4.22: Plot of the Distribution of the Vector Magnitudes With µ+2σ and 2µ
Marked

Figure 4.23: Scene with Trajectory Depicting the Vehicles Location for the Follow-
ing Figs. 4.24 and 4.25

5 and 6 contain large obstacles that would cover the entire camera’s FOV’s creating

more of a uniform field of view, and the algorithm would detect no obstacles. If these
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Figure 4.24: Optic Flow Field Displaying One Large Obstacle With Centroid (black
asterisk) Placed on the Imminent Obstacles Using µ+ 2σ for Segmentation
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Figure 4.25: Plot of the Distribution of the Vector Magnitudes With µ+2σ and 2µ
Marked

two scenes are discarded, the probabilities of obstacle avoidance for the high resolution

methods would be 76.7%, 95.8%, and 92.5% for the curl, µ+2σ, and 2µ segmentation
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Figure 4.26: Successful Navigation Through Urban Scene with 2µ. The elevation
on the view is increased to get total sight of the entire trajectory. This gives the
buildings a strange squatty look

Figure 4.27: Successful Navigation Through Urban Scene With µ+2σ. Once again
the elevation is increased from the normal view to see the entire trajectory. These
building also look squatty as a result of the look angle.

methods, respectively. This is valid because, although this is a limitation for the

algorithm, this scenario should never occur. No UAV or MAV would ever initialize a
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Figure 4.28: Collision Using µ+ 2σ

Figure 4.29: Collision Avoidance Using 2µ

mission in front of a wall, or turn 90◦ on a dime. This is physically impossible due

to turn radius limitations. Those highly unlikely scenarios would be the only way

to encounter the described troublesome scene. The percentages seem to show that

µ + 2σ is slightly better than 2µ, but the first one performed better due to some
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Figure 4.30: Collision Using 2µ

Figure 4.31: Collision Avoidance Using µ+ 2σ

unexpected effects from the simulation that is discussed in the Section 4.3.3. These
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artifacts create favorable outcomes for the trajectories because the method is more

sensitive to this artifact.

4.3.3 Unexpected Incidents. In the simulation, there were a few things

that are quite unexpected - see Figs.4.32 and 4.33. After analyzing these results an

interesting insight is attained. The whole scene is built in a mesh grid that is a

cube of 20 × 20 × 20, but the simulation appears as if it is flying inside a box of

these dimensions. This is because the optic flow is calculated based on ranging, as in

Section 3.5.2, and anytime that the vehicle is near an edge, the edge is perceived as

an obstacle. This creates the false sense that there are walls around the entire scene.

This can create strange guidance signals, depending on where it finds the centroid

on these walls. Sometimes they arise in the vertical plane and sometimes in the

horizontal plane, creating trajectories that are unwarranted. These anomalies usually

did not affect the outcomes of collisions with the real obstacles, but instead seemed

to force the vehicle to change altitude or direction for no apparent reason. For this

reason, these trajectories are included in the calculations of the collisions, but note

that it helps some scenes, specifically scenes 5 and 6, by making changes that would

not normally occur.

4.4 Summary

The guidance law that is implemented works as expected and many successful

trajectories can be seen in Appendix ??. Collisions can be avoided with this scheme in

most cases. It can be seen though that there are limitations to the guidance law. For

instance, the scenes with the walls that completely covered most or all of the camera’s

FOV, created a collision more times than not - see Table 4.1. This is due to the need

for contrast in the scene. There must be features that can be accurately tracked over

successive frames to determine looming when heading directly at an obstacle. This

means obstacles that are low in contrast, especially with respect to the background,

will be problematic for this algorithm.
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Figure 4.32: Scene With a Nonsense Control Implemented based on Artifact of the
Simulation

Figure 4.33: Scene With a Nonsense Control Implemented based on Artifact of the
Simulation

An important thing to realize is that image processing is a single point of failure.

The method chosen to segment the vectors and the image morphology can determine

success or failure. This is exemplified by the failure of the curl segmentation method,
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where areas of similar magnitude vectors create the illusion of two separate obstacles

when only one exists. Another consideration is that in this simulation the optic flow

created is noiseless, which means that with real imagery the optic flow might not

be as accurate. This makes it much more difficult to find the optic flow vectors

associated with obstacles. Although there may have been isolated failures of the

different methods used for image processing, the overall success rate demonstrates

that LOS rate equalization guidance and looming detection will cause a UAV to

avoid obstacles autonomously.
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V. Conclusions

5.1 Conclusion

It is shown that intuitive autonomous guidance schemes for obstacle avoidance

with a single forward facing camera based on nullifying the readily measurable LOS

rate difference and identifying looming based on optic flow sensing will yield expected

results. In fact, the flow balancing guidance scheme for obstacle avoidance is actually

enhanced with the inclusion of optical sensor limitations such as FOV and range lim-

itations. The addition of looming detection strengthens the algorithm to account for

many scenarios of obstacle avoidance. The application of LOS rate balancing guidance

and looming detection will result in UAV collision avoidance. The symmetric trajec-

tories are stable, although the linearized dynamics appear to indicate otherwise. The

stability can be seen in multiple instances of trajectories that center themselves be-

tween two obstacles - see Appendix ??. Furthermore, given GPS/AHRS information

and optic flow measurements, range to obstacles can be computed and the obstacle

avoidance algorithm will be enhanced, especially looming detection. Therefore, guid-

ance based on the measurement of optic flow and LOS rate for autonomous obstacle

avoidance can be significantly improved if the MAV is equipped with a GPS/AHRS

(Attitude and Heading Reference System) navigation system. One can then use the

known MAV motion and the optical measurements to estimate the ranges from ob-

stacles. With the known ranges, a guidance law can be developed for the MAV to

fly equidistant between obstacles or turn away from looming objects in front of the

vehicle.

This research, demonstrates some realistic characteristics. There are various

other issues to be considered. Optimally, collision avoidance with LOS rate equal-

ization should occur off the vertical and horizontal axes where the obstacles generate

optic flow in locations like a top-left and bottom-right of the scene. Another is that

there are optic flow vectors caused by the vehicle’s pitch and roll that need to be

accounted for to stabilize the optic flow and pull out translational trajectories only.

These roll motion caused optic flow vectors can create an illusion of motion, especially

96



in a single forward facing camera. Next, the aircraft has a six degree of freedom (6

DOF) of motion which invariably complicates the guidance laws required for colli-

sion avoidance. This is simplified in this work to a two channel approach with two

controls independent of each other. A real system would have to incorporate all six

controls working together. Following this, real systems might have altitude placards

that are completely ignored in this work. Finally, one of the most important issues

is the real-time calculation of optic flow, LOS rate, and looming for actual real-time

operation.

5.2 Future Work

The future of collision avoidance for UAVs is certain. There must be a proved

method to avoid obstacles and it must be accurate and reliable. The success of

missions by autonomous UAVs hinges on the survivability of the vehicle. High sur-

vivability rates can not be attained without competent collision avoidance. More

steps must be taken to refine this work for the intended goal of an errorless collision

avoidance system. Some of the issues that need to be addressed are the following:

• Study the statistics of the optic flow vectors for better methods of finding ob-

stacles.

• Identify the best optic flow algorithms and image processing for segmentation.

• Implement the guidance law with real imagery.

• Add more complexity to the simple guidance, e.g., non-frontal looming and 6

DOF motion.

• Add range calculation from video for time-to-collision calculation τ .

• Finding time to FOV encapsulation that is described below

As described in section 4.3.2 the statistics of mean and standard deviation are used

for segmenting the the optic flow vectors. Even though these worked well, further

study is needed using pattern recognition methods to determine a precise method to
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capture the distribution. Points of interest for this include clustering, expectation

maximization, or a Bayesian classifier. Using various optic flow routines and image

processing to analyze the most accurate method in acquiring the best flow field for

segmenting obstacle vectors from background. Some items that should be explored are

the number of flow vectors necessary, the method for calculation i.e., Lucas-Kanade

or Horn-Schunck, and possibly using the curl operator or another edge detector for

looming calculation only. There should be a study to determine the best method for

capturing actual looming in real imagery as, discussed in Appendix ??. Addition-

ally, the guidance control law can be implemented with real imagery and a UAV for

real flight testing in realistic environments. Once real imagery is used, non-frontal

looming can be studied for veering away from obstacles that are encountered in real

systems. Non-frontal looming is looming that occurs in the right or left and not the

center of the FOV. This would allow the vehicle to saccade away from the object.

Following that, installing a guidance system incorporating six degrees of freedom for

the control must be accomplished. Lastly, study the capability to back out ranging

information from imagery with a GPS/AHRS system on board the air vehicle that

can give critical information about time to collision. Time to collision information

can enable a hierarchical approach to the avoidance of obstacles in the scene. Related

to this is the time to FOV encapsulation, which simply incorporates the limitation

of this algorithm. This limitation is the inability to detect obstacles in low contrast

images. This is possible if the obstacle encapsulates the entire FOV, thus a collision

becomes unavoidable. Therefore, this parameter could be as important as time-to-

collision because with no contrast a UAV will carry on its preplanned course, which

might mean disaster.

5.3 Final Thoughts

The capability of the UAV to autonomously accomplish missions without risk-

ing human lives will continue to drive their use. As real-time image processing is

becoming increasingly possible, the eventual application of an autonomous UAV col-
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lision avoidance system will be realized. This means that continued research on this

topic is necessary. In this research it is decisively shown in simulation that collision

avoidance can be accomplished with a basic set of guidance laws incorporating LOS

rate equalization and looming detection.
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Appendix A. Appendix A: Figures Depicting Successful Trajectories

A.1 Successful Trajectories With the Curl Segementation

(a) Trajectory 1 (b) Trajectory 2

Figure A.1: successful trajectories through scene1

(a) Trajectory 1 (b) Trajectory 2

Figure A.2: successful trajectories through scene2
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(a) Trajectory 1 (b) Trajectory 2

Figure A.3: successful trajectories through scene3

(a) Trajectory 1 (b) Trajectory 2

Figure A.4: successful trajectories through scene4

(a) Trajectory 1 (b) Trajectory 2

Figure A.5: successful trajectories through scene7
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(a) Trajectory 1 (b) Trajectory 2

Figure A.6: successful trajectories through scene8

(a) Trajectory 1 (b) Trajectory 2

Figure A.7: successful trajectories through scene9

(a) Trajectory 1 (b) Trajectory 2

Figure A.8: successful trajectories through scene10
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(a) Trajectory 1 (b) Trajectory 2

Figure A.9: successful trajectories through scene11

(a) Trajectory 1 (b) Trajectory 2

Figure A.10: successful trajectories through scene12

(a) Trajectory 1 (b) Trajectory 2

Figure A.11: successful trajectories through scene13
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(a) Trajectory 1 (b) Trajectory 2

Figure A.12: successful trajectories through scene14
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A.2 Successful Trajectories With 2µ Segementation

(a) Trajectory 1 (b) Trajectory 2

Figure A.13: successful trajectories through scene1

(a) Trajectory 1 (b) Trajectory 2

Figure A.14: successful trajectories through scene2
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(a) Trajectory 1 (b) Trajectory 2

Figure A.15: successful trajectories through scene3

(a) Trajectory 1 (b) Trajectory 2

Figure A.16: successful trajectories through scene4

(a) Trajectory 1 (b) Trajectory 2

Figure A.17: successful trajectories through scene7
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(a) Trajectory 1 (b) Trajectory 2

Figure A.18: successful trajectories through scene8

(a) Trajectory 1 (b) Trajectory 2

Figure A.19: successful trajectories through scene9

(a) Trajectory 1 (b) Trajectory 2

Figure A.20: successful trajectories through scene10
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(a) Trajectory 1 (b) Trajectory 2

Figure A.21: successful trajectories through scene11

(a) Trajectory 1 (b) Trajectory 2

Figure A.22: successful trajectories through scene12

(a) Trajectory 1 (b) Trajectory 2

Figure A.23: successful trajectories through scene14
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A.3 Successful Trajectories With the µ+ 2σ Segementation

(a) Trajectory 1 (b) Trajectory 2

Figure A.24: successful trajectories through scene1

(a) Trajectory 1 (b) Trajectory 2

Figure A.25: successful trajectories through scene2
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(a) Trajectory 1 (b) Trajectory 2

Figure A.26: successful trajectories through scene3

(a) Trajectory 1 (b) Trajectory 2

Figure A.27: successful trajectories through scene4

(a) Trajectory 1 (b) Trajectory 2

Figure A.28: successful trajectories through scene7
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(a) Trajectory 1 (b) Trajectory 2

Figure A.29: successful trajectories through scene8

(a) Trajectory 1 (b) Trajectory 2

Figure A.30: successful trajectories through scene9

(a) Trajectory 1 (b) Trajectory 2

Figure A.31: successful trajectories through scene10
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(a) Trajectory 1 (b) Trajectory 2

Figure A.32: successful trajectories through scene11

(a) Trajectory 1 (b) Trajectory 2

Figure A.33: successful trajectories through scene12

(a) Trajectory 1 (b) Trajectory 2

Figure A.34: successful trajectories through scene13
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(a) Trajectory 1 (b) Trajectory 2

Figure A.35: successful trajectories through scene14
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Appendix B. Looming With Real Optic Flow

B.1 Introduction

In this project, a sequence of video and the use of image processing techniques,

were used to create optic flow of the scene. Optic flow was accomplished using a

correlation based motion detection algorithm. This was accomplished to observe

some looming in the motion vectors. Observing these motion vectors should depict if

there was a possibility of a collision.

To achieve this, frames of video will be separated into individual images and

processed frame to frame for change. Comparisons were made between multiple frame

changes to determine if looming is occurring. The video featured a square or rectangle

object that a camera was moving toward with a slight amount of contrast in the

background (See Fig. ??).

Frame 1 of the Image

Figure B.1: Frame 1
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Frame 2 of the Image

Figure B.2: Frame 2

B.2 Video Sequence

The data provided for this project was a video sequence collected using a com-

mercial off the shelf, Sony high definition video camcorder. The camcorder collects

video at a standard 30Hz with a pixel resolution of 1440x1080. Even though the

aspect ratio is 16x9, the images are square due to the rectangular shape of the pixels

in each image. This did not create any significant problems with the processing of

these images.

B.3 Pre-Processing the Video

The video provided had to be converted into a form that is compatible with

Matlab. The raw video was converted to AVI files using freeware called Virtual Dub.

Once they were in this format, the video was read into Matlab with the AVI READ

command. Due to the size of the images and the length of the video, the whole

sequence was impossible to load because there was not enough memory to store it.
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To alleviate this memory issue, every tenth frame was used and a maximum of 100

frames were processed at any one time. These frames were saved in pairs and placed

into 50 .Mat files and loaded separately for quicker computation. This also allowed for

more distinct changes in the image pairs. Next, these images were converted into gray

scale images, contrast enhanced using imadjust command, and cropped to 600x600

resolution (See Fig. ??). This gave a matrix of images that was 600 × 600 × 2. This

matrix of images was used in every iteration of the algorithm. At this point the images

were ready for correlation of pixels and the actual optic flow computation.

Frame 1 of the Image After Enhancement

Figure B.3: Enhanced Frame 1

B.4 Computation of Optic Flow

The Computation of the optic flow was completed in the Image Corr function.

Each image was broken down into ”super pixels” that were 8x8 blocks of pixels. This

task was accomplished with the Pixel Cluster function. These blocks were stripped

from frame 1 in the following manner: the top row of blocks were taken first from left
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Frame 2 of the Image After Enhancement

Figure B.4: Enhanced Frame 2

to right and then work down each 8 block row until the bottom edge was reached.

The index to the original image for each block was kept and set into a new variable

which was output from the function as well as the new pixel blocks.

The next step was to throw away any super pixels that do not have any in-

tensity information. The lack of contrast makes it difficult to correlate these pixels

to any other pixels because of the vast amount of benign background. To finish this

assignment, each super pixel was sent into the Discard function. In this function, the

mean intensity for each block was found and subtracted from every pixel and then the

pixels were summed and normalized to give a threshold value. If the threshold was

above 0.03, then the block was kept for future processing. The idea is to minimize

computations by discarding regions that are low in contrast. This minimized the

number of blocks kept which also helped reduce processing time. The indexes were

all maintained through this process.

A minimized number of blocks with intensity information now exist and the
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cross correlation can take place accurately. The super pixel was cross correlated

against frame 2 of the pair of frames to determine where the pixels are in the next

frame. This was achieved using the Normxcorr2 function in Matlab. This function

slides the super pixel block over the image and calculates the cross correlation at each

point. The location where the maximum correlation occurs represents the best new

location for the pixel block in the next frame. This function was done incrementally

until all of the blocks were correlated.

B.5 Visualization

The final step was to visualize the optic flow by creating a flow field using the

Qplot function. This function accepted the indexes of pixels for the first frame and

where they are predicted to be in the next frame then calculated the difference in the

x and y distances. In order to emphasize the looming effect from the flow, the delta

values for each direction were averaged and this average was subtracted from each

delta value. This minimized the translational flow in the flow field thus depicting more

of the looming effect. Next the delta’s are multiplied by a scale factor to amplify the

flow field thus allowing more discrimination. Finally, this function took the original

pixel coordinates and the new delta’s and used the Quiver command in Matlab to

create the flow field (see Fig. ??).

B.6 Conclusions

Several observations can be drawn from the data generated by the process de-

scribed above. First, this correlation based method was highly computationally in-

tensive. Many mitigating factors were used to speed up the processing. Next, there

was a lot of blocks of pixels that contained very little information, and a threshold

value was used to eliminate those blocks. Also, skipping up to 10 frames gave a better

optic flow output as larger changes in the imagery were present over the longer period

of sampling. This was most likely dependent on the data that is being analyzed.

Lastly, the translational flow made it hard to discern any looming. This was handled
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Figure B.5: Looming FlowField

as previously mentioned with the mean values of the flow vectors being subtracted to

null the translation flow as much as possible.
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